Faber, K. et al.: 2015 Science of Synthesis: Biocatalysis in Organic Synthesis 3 DOI: 10.1055/sos-SD-216-00001
Biocatalysis in Organic Synthesis 3

3.1 Dihydroxylation of Aromatics and Alkenes

Weitere Informationen

Buch

Herausgeber: Faber, K.; Fessner, W.-D.; Turner, N. J.

Autoren: Allen, C. C. R.; de Gonzalo, G.; Ellinger, J. J.; Ewing, T. A.; Faber, K.; Fernández-Lucas, J.; Flynn, C. M.; Fraaije, M. W.; García-Junceda, E.; Garrabou, X.; Gkotsi, D. S.; Glueck, S. M.; Goss, R. J. M.; Grogan, G.; Gröger, H.; Grüschow, S.; Hammer, S. C.; Hauer, B.; Herter, S.; Hilvert, D.; Hollmann, F.; Hormigo, D.; Hummel, W.; Molla, G.; Nestl, B. M.; Nolte, J. C.; Obexer, R.; Oroz-Guinea, I.; Patel, R. N.; Pollegioni, L.; Quin, M. B.; Schmidt-Dannert, C.; Smith, D. R. M.; Turner, N. J.; Urlacher, V. B.; van Berkel, W. J. H.; Woodley, J. M.

Titel: Biocatalysis in Organic Synthesis 3

Print ISBN: 9783131746610; Online ISBN: 9783131974914; Buch-DOI: 10.1055/b-003-125814

Fachgebiete: Organische Chemie

Science of Synthesis Reference Libraries



Übergeordnete Publikation

Titel: Science of Synthesis

DOI: 10.1055/b-00000101

Typ: Mehrbändiges Werk

 


C. C. R. Allen

Abstract

Zoom

The use of ring-hydroxylating dioxygenase enzymes for the biotransformation of aromatic hydrocarbons, alkenes, and phenols to give chiral cis-dihydrodiol metabolites is of significant potential for the preparation of chiral precursors for organic synthesis. Many products are produced with high enantiomeric excess, and a wide number of biotransformations have been studied. This type of biotransformation is typically used to convert readily available starting materials into single enantiomer bioproducts in a single step. The enzymes are multicomponent systems comprising two or more protein subunits. Furthermore, there is a requirement for reducing equivalents (e.g., NADH) and therefore whole-cell biocatalysts are used, either as wild-type strains, mutants, or clones. Recently, there have been significant developments in the use of molecular biology methods to improve these biocatalysts. This review covers the approaches employed to perform specific types of biotransformation, namely arene, alkene, and phenol hydroxylation.

 
  • 7 Ballard DGH, Courtis A, Shirley IM, Taylor SC. J. Chem. Soc., Chem. Commun. 1983; 954
  • 16 Allen CCR, Boyd DR, Dalton H, Sharma ND, Brannigan I, Kerley NA, Sheldrake GN, Taylor SC. J. Chem. Soc., Chem. Commun. 1995; 117
  • 21 Boyd DR, Sharma ND, Byrne B, Hand MV, Malone JF, Sheldrake GN, Blacker J, Dalton H. J. Chem. Soc., Perkin Trans. 1 1998; 1935
  • 32 Boyd DR, Sharma ND, Brannigan IN, Clarke DA, Dalton H, Haughey SA, Malone JF. Chem. Commun. (Cambridge) 1996; 2361
  • 35 Boyd DR, Sharma ND, Carroll JG, Malone JF, Mackerracher DG, Allen CCR. Chem. Commun. (Cambridge) 1998; 683
  • 36 Sbircea S, Sharma ND, Clegg W, Harrington RW, Horton PN, Hursthouse MB, Apperley DC, Boyd DR, James SL. Chem. Commun. (Cambridge) 2008; 5538
  • 46 Allen CCR, Boyd DR, Dalton H, Sharma ND, Haughey SA, McMordie RAS, McMurray BT, Sheldrake GN, Sproule K. J. Chem. Soc., Chem. Commun. 1995; 119
  • 50 Boyd DR, Dorrity MRJ, Malone JF, McMordie RAS, Sharma ND, Dalton H, Williams P. J. Chem. Soc., Perkin Trans. 1 1990; 489