Faber, K. et al.: 2015 Science of Synthesis: Biocatalysis in Organic Synthesis 3 DOI: 10.1055/sos-SD-216-00039
Biocatalysis in Organic Synthesis 3

3.3.1 Oxidation Using Dehydrogenases

More Information

Book

Editors: Faber, K.; Fessner, W.-D.; Turner, N. J.

Authors: Allen, C. C. R.; de Gonzalo, G.; Ellinger, J. J.; Ewing, T. A.; Faber, K.; Fernández-Lucas, J.; Flynn, C. M.; Fraaije, M. W.; García-Junceda, E.; Garrabou, X.; Gkotsi, D. S.; Glueck, S. M.; Goss, R. J. M.; Grogan, G.; Gröger, H.; Grüschow, S.; Hammer, S. C.; Hauer, B.; Herter, S.; Hilvert, D.; Hollmann, F.; Hormigo, D.; Hummel, W.; Molla, G.; Nestl, B. M.; Nolte, J. C.; Obexer, R.; Oroz-Guinea, I.; Patel, R. N.; Pollegioni, L.; Quin, M. B.; Schmidt-Dannert, C.; Smith, D. R. M.; Turner, N. J.; Urlacher, V. B.; van Berkel, W. J. H.; Woodley, J. M.

Title: Biocatalysis in Organic Synthesis 3

Print ISBN: 9783131746610; Online ISBN: 9783131974914; Book DOI: 10.1055/b-003-125814

Subjects: Organic Chemistry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Type: Multivolume Edition

 


Abstract

The use of alcohol dehydrogenases has a number of advantages over traditional chemical methods for the oxidation of alcohols. These include the mild reaction conditions, the avoidance of tedious protecting-group strategies, and the high regio- and chemoselectivites. This review highlights the most important alcohol dehydrogenases used for biocatalysis and discusses the systems used for cofactor regeneration when employing these enzymes. The oxidation of primary alcohols to aldehydes and further to carboxylic acids is presented, along with examples of subsequent cascade reactions (e.g., oxidation–lactonization of diols). The oxidation of secondary alcohols to ketones, including the application of this reaction in kinetic resolutions and deracemizations, is also described.

 
  • 4 Janes SM, Mu D, Wemmer DE, Smith AJ, Kaur S, Maltby D, Burlingame AL, Klinman JP. Science (Washington, D. C.) 1990; 248: 981
  • 11 de Jong GAH, Caldeira J, Sun J, Jongejan JA, de Vries S, Loehr TM, Moura I, Moura JJG, Duine JA. Biochemistry 1995; 34: 9451
  • 18 Van Hecke W, Haltrich D, Frahm B, Brod H, Dewulf J, Van Langenhove H, Ludwig R. J. Mol. Catal. B: Enzym. 2011; 68: 154
  • 22 Christenson A, Dimcheva N, Ferapontova EE, Gorton L, Ruzgas T, Stoica L, Shleev S, Yaropolov AI, Haltrich D, Thorneley RNF, Aust SD. Electroanalysis 2004; 16: 1074
  • 26 Hill HAO, Oliver BN, Page DJ, Hopper DJ. J. Chem. Soc., Chem. Commun. 1985; 1469
  • 33 Weckbecker A, Gröger H, Hummel W, Biosystems Engineering I: Creating Superior Biocatalysts. Wittmann C, Krull R. Springer; Berlin 2010. 120. 195
  • 34 Orbegozo T, Lavandera I, Fabian WMF, Mautner B, de Vries JG, Kroutil W. Tetrahedron 2009; 65: 6805
  • 36 Lavandera I, Kern A, Resch V, Ferreira-Silva B, Glieder A, Fabian WMF, de Wildeman S, Kroutil W. Org. Lett. 2008; 10: 2155
  • 39 Lountos GT, Riebel BR, Wellborn WB, Bommarius AS, Orville AM. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2004; 60: 2044
  • 45 Ferrandi EE, Monti D, Patel I, Kittl R, Haltrich D, Riva S, Ludwig R. Adv. Synth. Catal. 2012; 354: 2821
  • 57 Jones JB, Taylor KE. J. Chem. Soc., Chem. Commun. 1973; 205
  • 63 Hilt G, Steckhan E. J. Chem. Soc., Chem. Commun. 1993; 1706
  • 64 Ruppert R, Steckhan E. J. Chem. Soc., Perkin Trans. 2 1989; 811
  • 71 Kochius S, Paetzold M, Scholz A, Merkens H, Vogel A, Ansorge-Schumacher M, Hollmann F, Schrader J, Holtmann D. J. Mol. Catal. B: Enzym. 2014; 103: 61
  • 73 Hilt G, Lewall B, Montero G, Utley JHP, Steckhan E. Liebigs Ann./Recl. 1997; 2289
  • 78 Orbegozo T, de Vries JG, Kroutil W. Eur. J. Org. Chem. 2010; 3445
  • 81 Villa R, Romano A, Gandolfi R, Sinisterra Gago JV, Molinari F. Tetrahedron Lett. 2002; 43: 6059
  • 88 Molinari F, Villa R, Aragozzini F, Cabella P, Barbeni M, Squarcia F. J. Chem. Technol. Biotechnol. 1997; 70: 294
  • 89 Habe H, Shimada Y, Yakushi T, Hattori H, Ano Y, Fukuoka T, Kitamoto D, Itagaki M, Watanabe K, Yanagishita H, Matsushita K, Sakaki K. Appl. Environ. Microbiol. 2009; 75: 7760
  • 90 Geerlof A, Jongejan JA, van Dooren TJGM, Raemakers-Franken PC, van den Tweel WJJ, Duine JA. Enzyme Microb. Technol. 1994; 16: 1059
  • 103 Irwin AJ, Lok KP, Huang KW.-C, Jones JB. J. Chem. Soc., Perkin Trans. 1 1978; 1636
  • 106 Moreno-Horn M, Martinez-Rojas E, Görisch H, Tressl R, Garbe LA. J. Mol. Catal. B: Enzym. 2007; 49: 24
  • 107 Patel RN, Liu M, Banerjee A, Thottathil JK, Kloss J, Szarka LJ. Enzyme Microb. Technol. 1992; 14: 778
  • 108 Kara S, Spickermann D, Schrittwieser JH, Leggewie C, van Berkel WJH, Arends IWCE, Hollmann F. Green Chem. 2013; 15: 330
  • 116 Könst P, Merkens H, Kara S, Kochius S, Vogel A, Zuhse R, Holtmann D, Arends IWCE, Hollmann F. Angew. Chem. Int. Ed. 2012; 51: 9914
  • 118 Andrade LH, Utsunomiya RS, Omori AT, Porto ALM, Comasseto JV. J. Mol. Catal. B: Enzym. 2006; 38: 84
  • 119 Kagohara E, Pellizari VH, Comasseto JV, Andrade LH, Porto ALM. Food Technol. Biotechnol. 2008; 46: 381
  • 121 Fogagnolo M, Giovannini PP, Guerrini A, Medici A, Pedrini P, Colombi N. Tetrahedron: Asymmetry 1998; 9: 2317
  • 122 Ramírez MA, Pérez HI, Manjarrez N, Solís A, Luna H, Cassani J. Electron. J. Biotechnol. 2008; 11: 7
  • 134 Koszelewski D, Clay D, Rozzell D, Kroutil W. Eur. J. Org. Chem. 2009; 2289
  • 139 Monti D, Ferrandi EE, Zanellato I, Hua L, Polentini F, Carrea G, Riva S. Adv. Synth. Catal. 2009; 351: 1303
  • 142 Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K. Nature (London) 2012; 485: 185
  • 144 Reetz MT, Asymmetric Organic Synthesis with Enzymes. Gotor V, Alfonso I, García-Urdiales E. Wiley-VCH; Weinheim, Germany 2008: 21–64