Faber, K. et al.: 2015 Science of Synthesis: Biocatalysis in Organic Synthesis 3 DOI: 10.1055/sos-SD-216-00175
Biocatalysis in Organic Synthesis 3

3.5.2 Oxidation at Sulfur

Weitere Informationen

Buch

Herausgeber: Faber, K.; Fessner, W.-D.; Turner, N. J.

Autoren: Allen, C. C. R.; de Gonzalo, G.; Ellinger, J. J.; Ewing, T. A.; Faber, K.; Fernández-Lucas, J.; Flynn, C. M.; Fraaije, M. W.; García-Junceda, E.; Garrabou, X.; Gkotsi, D. S.; Glueck, S. M.; Goss, R. J. M.; Grogan, G.; Gröger, H.; Grüschow, S.; Hammer, S. C.; Hauer, B.; Herter, S.; Hilvert, D.; Hollmann, F.; Hormigo, D.; Hummel, W.; Molla, G.; Nestl, B. M.; Nolte, J. C.; Obexer, R.; Oroz-Guinea, I.; Patel, R. N.; Pollegioni, L.; Quin, M. B.; Schmidt-Dannert, C.; Smith, D. R. M.; Turner, N. J.; Urlacher, V. B.; van Berkel, W. J. H.; Woodley, J. M.

Titel: Biocatalysis in Organic Synthesis 3

Print ISBN: 9783131746610; Online ISBN: 9783131974914; Buch-DOI: 10.1055/b-003-125814

Fachgebiete: Organische Chemie

Science of Synthesis Reference Libraries



Übergeordnete Publikation

Titel: Science of Synthesis

DOI: 10.1055/b-00000101

Typ: Mehrbändiges Werk

 


G. Grogan

Abstract

Zoom

The asymmetric biocatalytic oxidation of sulfides can be performed with high enantioselectivity by a number of different enzymes, allowing access to biologically active compounds including flavors and pharmaceuticals, and also chiral auxiliaries for organic synthesis. The application of biocatalysts in asymmetric sulfoxidation has benefited recently from advances in molecular biology that allow the study and application of individual enzymes, either purified or expressed in recombinant strains of E. coli. In this chapter, the major contemporary approaches to biocatalytic sulfoxidation, including enzymes such as peroxidases, flavin-dependent monooxygenases, and dioxygenases, are reviewed. In addition, the most user-friendly examples of enzyme-catalyzed sulfoxidation are illustrated using practical exemplar procedures from the relevant literature.

 
  • 8 Colonna S, Gaggero N, Pasta P, Ottolina G. Chem. Commun. (Cambridge) 1996; 2303
  • 13 Auret BJ, Boyd DR, Henbest HB, Ross S. J. Chem. Soc. C 1968; 2371
  • 19 Auret BJ, Boyd DR, Cassidy ES, Turley F, Drake SF, Mason SF. J. Chem. Soc., Chem. Commun. 1983; 282
  • 20 Auret BJ, Boyd DR, Dunlop R. J. Chem. Soc., Perkin Trans. 1 1988; 2827
  • 35 Colonna S, Gaggero N, Manfredi A, Casella L, Gullotti M. J. Chem. Soc., Chem. Commun. 1988; 1451
  • 54 van de Velde F, Konemann L, van Rantwijk F, Sheldon RA. Chem. Commun. (Cambridge) 1998; 1891
  • 77 Colonna S, Gaggero N, Bertinotti A, Carrea G, Pasta P, Bernardi A. J. Chem. Soc., Chem. Commun. 1995; 1123
  • 78 Colonna S, Gaggero N, Pasta P, Ottolina G. Chem. Commun. (Cambridge) 1996; 2303
  • 79 Colonna S, Gaggero N, Carrea G, Pasta P. Chem. Commun. (Cambridge) 1997; 439
  • 87 Bong YK, Clay MD, Collier SJ, Mijts B, Vogel M, Zhang X, Zhu J, Nazor J, Smith D, Song S. WO 2 011 071 982, 2011
  • 93 Rioz-Martínez A, de Gonzalo G, Torres Pazmiño DE, Fraaije MW, Gotor V. Eur. J. Org. Chem. 2010; 2409
  • 100 Rioz-Martínez A, de Gonzalo G, Torres Pazmiño DE, Fraaije MW, Gotor V. Eur. J. Org. Chem. 2010; 2409
  • 102 Allen CCR, Boyd DR, Dalton H, Sharma ND, Haughey SA, McMordie RAS, McMurray BT, Sheldrake GN, Sproule K. J. Chem. Soc., Chem. Commun. 1995; 119