1.2 C—C Bond Formation by Hetarene C—H Activation
Book
Editor: Yu, J.-Q.
Title: Catalytic Transformations via C—H Activation 1
Subtitle: C-C, C-N, C-O, C-Hal, and C-B Bond Formation
Print ISBN: 9783131711311; Online ISBN: 9783132403413; Book DOI: 10.1055/b-003-129295
1st edition © 2016 Thieme. All rights reserved.
Georg Thieme Verlag KG, Stuttgart
Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry
Science of Synthesis Reference Libraries
Parent publication
Title: Science of Synthesis
DOI: 10.1055/b-00000101
Type: Multivolume Edition
Abstract

Heteroaromatic compounds play key roles in pharmaceuticals, agrochemicals, and materials, and the development of efficient synthetic methods to access differently substituted hetarenes is therefore an important issue in organic synthesis. To circumvent the limitations associated with classical protocols to form hetaryl—carbon bonds, metal-catalyzed hetarene C—H activation followed by C—C bond-forming reactions has been developed extensively in recent decades. These transformations allow the construction of C—C bonds between hetaryl moieties and all the three differently hybridized carbons to result in alkylation, alkenylation, acylation, alkynylation, etc. of a diverse range of hetarenes irrespective of their electronic characters. This chapter deals with C—C bond formation by hetarene C—H activation achieved by transition-metal catalysis.
Key words
hetarenes - alkylation - alkenylation - arylation - acylation - alkynylation - cyanation- 14 Zaitsev AB, Gruber S, Plüss PA, Pregosin PS, Veiros LF, Wörle M. J. Am. Chem. Soc. 2008; 130: 11604
- 48 Rech JC, Yato M, Duckett D, Ember B, LoGrasso PV, Bergman RG, Ellman JA. J. Am. Chem. Soc. 2007; 129: 490
- 112 Johnson DG, Lynam JM, Mistry NS, Slattery JM, Thatcher RJ, Whitwood AC. J. Am. Chem. Soc. 2013; 135: 2222
- 117 Tsuchimoto T, Matsubayashi H, Kaneko M, Nagase Y, Miyamura T, Shirakawa E. J. Am. Chem. Soc. 2008; 130: 15823
- 129 Hartwig JF, Kawatsura M, Hauck SI, Shaughnessy KH, Alcazar-Roman LM. J. Org. Chem. 1999; 64: 5575
- 148 Wen J, Qin S, Ma L.-F, Dong L, Zhang J, Liu S.-S, Duan Y.-S, Chen S.-Y, Hu C.-W, Yu X.-Q. Org. Lett. 2010; 12: 2694
- 153 McClure MS, Glover B, McSorley E, Millar A, Osterhout MH, Roschangar F. Org. Lett. 2001; 3: 1677
- 170 Kirchberg S, Tani S, Ueda K, Yamaguchi J, Studer A, Itami K. Angew. Chem. Int. Ed. 2011; 50: 2387
- 182 Mukhopadhyay S, Rothenberg G, Gitis D, Baidossi M, Ponde DE, Sasson Y. J. Chem. Soc., Perkin Trans. 2 2000; 1809
- 185 Seiple IB, Su S, Rodriguez RA, Gianatassio R, Fujiwara Y, Sobel AL, Baran PS. J. Am. Chem. Soc. 2010; 132: 13194
- 188 Ye M, Gao G.-L, Edmunds AJF, Worthington PA, Morris JA, Yu J.-Q. J. Am. Chem. Soc. 2011; 133: 19090
- 192 Campeau L.-C, Stuart DR, Leclerc J.-P, Bertrand-Laperle M, Villemure E, Sun H.-Y, Lasserre S, Guimond N, Lecavallier M, Fagnou K. J. Am. Chem. Soc. 2009; 131: 3291
- 200 Potavathri S, Dumas AS, Dwight TA, Naumiec GR, Hammann JM, DeBoef B. Tetrahedron Lett. 2008; 49: 4050
- 201 Potavathri S, Pereira KC, Gorelsky SI, Pike A, LeBris AP, DeBoef B. J. Am. Chem. Soc. 2010; 132: 14676
- 208 Jafarpour F, Hazrati H, Mohasselyazdi N, Khoobi M, Shafiee A. Chem. Commun. (Cambridge) 2013; 49: 10935
- 215 Takahashi M, Masui K, Sekiguchi H, Kobayashi N, Mori A, Funahashi M, Tamaoki N. J. Am. Chem. Soc. 2006; 128: 10930
- 237 Moore EJ, Pretzer WR, OʼConnell TJ, Harris J, LaBounty L, Chou L, Grimmer SS. J. Am. Chem. Soc. 1992; 114: 5888