2.5 C—C Bond Formation by Double C—H Activation
Buch
Herausgeber: Yu, J.-Q.
Titel: Catalytic Transformations via C-H Activation 2
Print ISBN: 9783132057210; Online ISBN: 9783132404137; Buch-DOI: 10.1055/b-004-129675
1st edition © 2015 Thieme. All rights reserved.
Georg Thieme Verlag KG, Stuttgart
Fachgebiete: Organische Chemie
Science of Synthesis Reference Libraries
Übergeordnete Publikation
Titel: Science of Synthesis
DOI: 10.1055/b-00000101
Typ: Mehrbändiges Werk
Abstract
This chapter focuses on transition-metal-catalyzed aryl—aryl bond-forming reactions via double C—H activation. Biaryl scaffolds have received much attention as a privileged structure broadly found in biologically active natural products, pharmaceuticals, agrochemicals, and functional molecules in material sciences, etc. Transition-metal-catalyzed cross-coupling reactions are the most general and efficient methods to synthesize biaryls, but both coupling partners need to be preactivated in transition-metal-catalyzed cross-coupling reactions when compared with simple arenes. Over the past decade, significant advances have been made in transition-metal-catalyzed biaryl synthesis using simple arenes as substrates via C—H activation. This chapter summarizes representative examples of transition-metal-catalyzed biaryl synthesis using two simple arenes as substrates via double C—H activation.
Schlüsselwörter
transition-metal catalysis - double C—H activation - biaryl synthesis - directing groups- 2 Bringmann G, Price Mortimer AJ, Keller PA, Gresser MJ, Garner J, Breuning M. Angew. Chem. 2005; 117: 5518 Angew. Chem. Int. Ed. 2005; 44: 5384
- 6 Metal-Catalyzed Cross-Coupling Reactions. de Meijere A, Diederich F. Wiley-VCH; Weinheim, Germany 2004
- 20 Mukhopadhyay S, Rothenberg G, Lando G, Agbaria K, Kazanci M, Sasson Y. Adv. Synth. Catal. 2001; 343: 455
- 22 Takahashi M, Masui K, Sekiguchi H, Kobayashi N, Mori A, Funahashi M, Tamaoki N. J. Am. Chem. Soc. 2006; 128: 10930
- 31 Potavathri S, Pereira KC, Gorelsky SI, Pike A, LeBris AP, DeBoef B. J. Am. Chem. Soc. 2010; 132: 14676
- 41 Wang Z, Li K, Zhao D, Lan J, You J. Angew. Chem. 2011; 123: 5477 Angew. Chem. Int. Ed. 2011; 50: 5365
- 44 Kuhl N, Hopkinson MN, Glorius F. Angew. Chem. 2012; 124: 8354 Angew. Chem. Int. Ed. 2012; 51: 8230
- 53 Li B.-J, Tian S.-L, Fang Z, Shi Z.-J. Angew. Chem. 2008; 120: 1131 Angew. Chem. Int. Ed. 2008; 47: 1115
- 59 Wencel-Delord J, Nimphius C, Patureau FW, Glorius F. Angew. Chem. 2012; 124: 2290 Angew. Chem. Int. Ed. 2012; 51: 2247
- 60 Wencel-Delord J, Nimphius C, Wang H, Glorius F. Angew. Chem. 2012; 124: 13175 Angew. Chem. Int. Ed. 2012; 51: 13001
- 62 Dong J, Long Z, Song F, Wu N, Guo Q, Lan J, You J. Angew. Chem. 2013; 125: 608 Angew. Chem. Int. Ed. 2013; 52: 580