2.1. 2 Domino Reactions Including [2 + 2], [3 + 2], or [5 + 2] Cycloadditions
Book
Editor: Snyder, S. A.
Title: Applications of Domino Transformations in Organic Synthesis 2
Print ISBN: 9783132211414; Online ISBN: 9783132402218; Book DOI: 10.1055/b-003-128260
1st edition © 2016. Thieme. All rights reserved.
Georg Thieme Verlag KG, Stuttgart
Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry
Science of Synthesis Reference Libraries
Parent publication
Title: Science of Synthesis
DOI: 10.1055/b-00000101
Series Editors: Carreira, E. M.; Decicco, C. P.; Fürstner, A.; Koch, G.; Molander, G.; Schaumann, E.; Shibasaki, M.; Thomas, E. J.; Trost, B. M.
Type: Multivolume Edition
Abstract
This chapter covers examples of domino reactions that include a [2 + 2]-, [3 + 2]-, or [5 + 2]-cycloaddition reaction. The focus is on concerted reactions that occur in a tandem sequence in one pot, rather than overall “formal cycloadditions” or multicomponent couplings. The cycloaddition step typically involves an alkene or alkyne as one of the components in the ring-forming reaction. In addition to the key cycloaddition step, another bond-forming reaction will be involved that can precede or follow the cycloaddition. This other reaction is often an alkylation that generates the substrate for the cycloaddition, or is a ring-opening or rearrangement reaction that occurs after the cycloaddition. As the chemistry involves sequential reactions including at least one ring-forming reaction, unusual molecular structures or compounds that can be difficult to prepare by other means can be obtained. As a result, this strategy has been used for the regio- and stereoselective preparation of a vast array of polycyclic, complex compounds of interest to diverse scientific communities.
Key words
alkylation - [2 + 2] cycloaddition - [3 + 2] cycloaddition - [5 + 2] cycloaddition - dipolar cycloaddition - domino reactions - Nazarov cyclization - ring formation - [3,3]-sigmatropic rearrangement - tandem reactions- 22 Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products. Padwa A, Pearson WH. Eds.; Wiley; New York 2003
- 31 Davison EC, Fow ME, Holmes AB, Roughley SD, Smith CJ, Williams GM, Davies JE, Raithby PR, Adams JP, Forbes IT, Press NJ, Thompson MJ. J. Chem. Soc., Perkin Trans. 1 2002; 1494
- 33 Krenske EH, Agopcan S, Aviyente V, Houk KN, Johnson BA, Holmes AB. J. Am. Chem. Soc. 2012; 134: 12010
- 41 Wang X, Abrahams QM, Zavalij PY, Doyle MP. Angew. Chem. 2012; 124: 6009 Angew. Chem. Int. Ed. 2012; 51: 5907
- 43 Çelebi-Ölçüm N, Lam Y, Richmond E, Ling BL, Smith AD, Houk KN. Angew. Chem. 2011; 123: 11680 Angew. Chem. Int. Ed. 2011; 50: 11478
- 45 Lu L.-Q, Li F, An J, Zhang J.-J, An X.-L, Hua Q.-L, Xiao W.-J. Angew. Chem. 2009; 121: 9706 Angew. Chem. Int. Ed. 2009; 48: 9542
- 57 Termath AO, Ritter S, König M, Kranz DP, Neudörfl J.-M, Prokop A, Schmalz H.-G. Eur. J. Org. Chem. 2012; 4501
- 64 Oh CH, Lee JH, Lee SJ, Kim JI, Hong CS. Angew. Chem. 2008; 120: 7615 Angew. Chem. Int. Ed. 2008; 47: 7505
- 69 Xie Y.-X, Yan Z.-Y, Qian B, Deng W.-Y, Wang D.-Z, Wu L.-Y, Liu X.-Y, Liang Y.-M. Chem. Commun. (Cambridge) 2009; 5451
- 73 Vedejs E, Naidu BN, Klapars A, Warner DL, Li V.-S, Na Y, Kohn H. J. Am. Chem. Soc. 2003; 125: 15796
- 76 Coldham I, Burrell AJM, White LE, Adams H, Oram N. Angew. Chem. 2007; 119: 6271 Angew. Chem. Int. Ed. 2007; 46: 6159
- 79 Coldham I, Burrell AJM, Guerrand HDS, Watson L, Martin NG, Oram N. Beilstein J. Org. Chem. 2012; 8: 107
- 80 Fang C, Shanahan CS, Paull DH, Martin SF. Angew. Chem. 2012; 124: 10748 Angew. Chem. Int. Ed. 2012; 51: 10596
- 86 Arisawa M, Fujii Y, Kato H, Fukuda H, Matsumoto T, Ito M, Abe H, Ito Y, Shuto S. Angew. Chem. 2013; 125: 1037 Angew. Chem. Int. Ed. 2013; 52: 1003