Snyder, S. A.: 2016 Science of Synthesis, 2015/4b: Applications of Domino Transformations in Organic Synthesis 2 DOI: 10.1055/sos-SD-220-00038
Applications of Domino Transformations in Organic Synthesis 2

2.1.2 Domino Reactions Including [2 + 2], [3 + 2], or [5 + 2] Cycloadditions

More Information

Book

Editor: Snyder, S. A.

Authors: Bella, M.; Blond, G.; Boyce, J.; Coldham, I.; Dömling, A.; Donnard, M.; Guerrero, C.; Gulea, M.; Kroon, E.; Moliterno, M.; Neochoritis, C.; Novikov, A.; Porco Jr., J. A.; Renzi, P.; Salvio, R.; Schaumann, E.; Sheikh, N. S.; Song, A.; Sorensen, E. J.; Suffert, J.; Tzitzikas, T.; Wang, W.; West, J.; Yeung, Y.-Y.; Yu, Z. W.; Zakarian, A.

Title: Applications of Domino Transformations in Organic Synthesis 2

Print ISBN: 9783132211414; Online ISBN: 9783132402218; Book DOI: 10.1055/b-003-128260

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Carreira, E. M.; Decicco, C. P.; Fürstner, A.; Koch, G.; Molander, G.; Schaumann, E.; Shibasaki, M.; Thomas, E. J.; Trost, B. M.

Type: Multivolume Edition

 


Abstract

This chapter covers examples of domino reactions that include a [2 + 2]-, [3 + 2]-, or [5 + 2]-cycloaddition reaction. The focus is on concerted reactions that occur in a tandem sequence in one pot, rather than overall “formal cycloadditions” or multicomponent couplings. The cycloaddition step typically involves an alkene or alkyne as one of the components in the ring-forming reaction. In addition to the key cycloaddition step, another bond-forming reaction will be involved that can precede or follow the cycloaddition. This other reaction is often an alkylation that generates the substrate for the cycloaddition, or is a ring-opening or rearrangement reaction that occurs after the cycloaddition. As the chemistry involves sequential reactions including at least one ring-forming reaction, unusual molecular structures or compounds that can be difficult to prepare by other means can be obtained. As a result, this strategy has been used for the regio- and stereoselective preparation of a vast array of polycyclic, complex compounds of interest to diverse scientific communities.

 
  • 10 Pérez-Anes A, García-García P, Suárez-Sobrino ÁL, Aguilar E. Eur. J. Org. Chem. 2007; 3480
  • 17 Hattori T, Suzuki Y, Uesugi O, Oi S, Miyano S. Chem. Commun. (Cambridge) 2000; 73
  • 22 Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products. Padwa A, Pearson WH. Eds.; Wiley; New York 2003
  • 31 Davison EC, Fow ME, Holmes AB, Roughley SD, Smith CJ, Williams GM, Davies JE, Raithby PR, Adams JP, Forbes IT, Press NJ, Thompson MJ. J. Chem. Soc., Perkin Trans. 1 2002; 1494
  • 40 Li Y.-J, Chuang H.-Y, Yeh S.-M, Huang W.-S. Eur. J. Org. Chem. 2011; 1932
  • 43 Çelebi-Ölçüm N, Lam Y, Richmond E, Ling BL, Smith AD, Houk KN. Angew. Chem. 2011; 123: 11680 Angew. Chem. Int. Ed. 2011; 50: 11478
  • 45 Lu L.-Q, Li F, An J, Zhang J.-J, An X.-L, Hua Q.-L, Xiao W.-J. Angew. Chem. 2009; 121: 9706 Angew. Chem. Int. Ed. 2009; 48: 9542
  • 48 Abbiati G, Arcadi A, Marinelli F, Rossi E. Eur. J. Org. Chem. 2003; 1423
  • 56 Shimada N, Hanari T, Kurosaki Y, Anada M, Nambu H, Hashimoto S. Tetrahedron Lett. 2010; 51: 6572
  • 57 Termath AO, Ritter S, König M, Kranz DP, Neudörfl J.-M, Prokop A, Schmalz H.-G. Eur. J. Org. Chem. 2012; 4501
  • 69 Xie Y.-X, Yan Z.-Y, Qian B, Deng W.-Y, Wang D.-Z, Wu L.-Y, Liu X.-Y, Liang Y.-M. Chem. Commun. (Cambridge) 2009; 5451
  • 86 Arisawa M, Fujii Y, Kato H, Fukuda H, Matsumoto T, Ito M, Abe H, Ito Y, Shuto S. Angew. Chem. 2013; 125: 1037 Angew. Chem. Int. Ed. 2013; 52: 1003
  • 87 DʼSouza AM, Spiccia N, Basutto J, Jokisz P, Wong LS.-M, Meyer AG, Holmes AB, White JM, Ryan JH. Org. Lett. 2011; 13: 486
  • 92 Majumdar KC, Ray K. Synthesis 2011; 3767