Gao, S. et al.: 2016 Science of Synthesis, 2016/4a: Metal-Catalyzed Cyclization Reactions 1 DOI: 10.1055/sos-SD-221-00093
Metal-Catalyzed Cyclization Reactions 1

1.4 Metal-Catalyzed Intramolecular Cyclizations Involving Cyclopropane and Cyclopropene Ring Opening

More Information

Book

Editors: Gao, S.; Ma, S.

Authors: Alderson, J.; Beccalli, E. M.; Bonetti, A.; Gao, S.; Guiry, P.; Jammi, S.; Mazza, A.; Nottingham, C.; Phelps, A.; Schomaker, J. M.; Shi, M.; Tang, X.-Y.; Wang, D.; Yamamoto, Y.; You, S. ; Zhang, L.; Zhang, X.

Title: Metal-Catalyzed Cyclization Reactions 1

Print ISBN: 9783131998613; Online ISBN: 9783132403406; Book DOI: 10.1055/b-003-129294

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Carreira, E. M.; Decicco, C. P.; Fürstner, A.; Koch, G.; Molander, G.; Schaumann, E.; Shibasaki, M.; Thomas, E. J.; Trost, B. M.

Type: Multivolume Edition

 


Abstract

Due to the ring strain of cyclopropane rings, transition-metal catalysts can easily undergo an oxidative addition with the cyclopropane moiety of methylenecyclopropanes (MCPs) to give trimethylenemethane (TMM) intermediates. Subsequent intramolecular cyclization with unsaturated systems takes place to give cyclized products. Moreover, in the presence of a chiral ligand, high enantioselectivity can be achieved. The ring-fused products are versatile building blocks in organic synthesis.

 
  • 1 Ma S, Lu L, Zhang J. J. Am. Chem. Soc. 2004; 126: 9645
  • 2 Siriwardana AI, Kamada M, Nakamura I, Yamamoto Y. J. Org. Chem. 2005; 70: 5932
  • 3 Delgado A, Rodrígues JR, Castedo L, Mascareñas JL. J. Am. Chem. Soc. 2003; 125: 9282
  • 4 López F, Delgado A, Rodrígues JR, Castedo L, Mascareñas JL. J. Am. Chem. Soc. 2004; 126: 10262
  • 5 Gulías M, Durán J, López F, Castedo L, Mascareñas JL. J. Am. Chem. Soc. 2007; 129: 11026
  • 6 Shi M, Liu L.-P, Tang J. J. Am. Chem. Soc. 2006; 128: 7430
  • 7 Tian G.-Q, Yuan Z.-L, Zhu Z.-B, Shi M. Chem. Commun. (Cambridge) 2008; 2668
  • 8 Fürstner A, Aïssa C. J. Am. Chem. Soc. 2006; 128: 6306
  • 9 Zhang D.-H, Tang X.-Y, Wei Y, Shi M. Chem.–Eur. J. 2013; 19: 13668
  • 10 Aïssa C, Fürstner A. J. Am. Chem. Soc. 2007; 129: 14836
  • 11 Chen K, Zhu Z.-Z, Tang X.-Y, Shi M. Angew. Chem. Int. Ed. 2014; 53: 6645
  • 12 Yao B, Li Y, Liang Z, Zhang Y. Org. Lett. 2011; 13: 640
  • 13 Li S, Luo Y, Wu J. Org. Lett. 2011; 13: 3190
  • 14 Scott ME, Bethuel Y, Lautens M. J. Am. Chem. Soc. 2007; 129: 1482
  • 15 Sethofer SG, Staben ST, Hung OY, Toste FD. Org. Lett. 2008; 10: 4315
  • 16 Yao L.-F, Wei Y, Shi M. J. Org. Chem. 2009; 74: 9466
  • 17 Felix RJ, Gutierrez O, Tantillo DJ, Gagné MR. J. Org. Chem. 2013; 78: 5685
  • 18 Zheng H, Adduci LL, Felix RJ, Gagné MR. Angew. Chem. Int. Ed. 2014; 53: 7904
  • 19 Zhang D.-H, Du K, Shi M. Org. Biomol. Chem. 2012; 10: 3763
  • 20 Zriba R, Gandon V, Aubert C, Fensterbank L, Malacria M. Chem.–Eur. J. 2008; 14: 1482
  • 21 Jackson SK, Karadeolian A, Driega AB, Kerr MA. J. Am. Chem. Soc. 2008; 130: 4196
  • 22 Dias DA, Kerr MA. Org. Lett. 2009; 11: 3694
  • 23 Xing S, Pan W, Liu C, Ren J, Wang Z. Angew. Chem. Int. Ed. 2010; 49: 3215
  • 24 Beal RB, Dombroski MA, Snider BB. J. Org. Chem. 1986; 51: 4391
  • 25 Xing S, Li Y, Li Z, Liu C, Ren J, Wang Z. Angew. Chem. Int. Ed. 2011; 50: 12605
  • 26 Zhu W, Fang J, Liu Y, Wang Z. Angew. Chem. Int. Ed. 2013; 52: 2032
  • 27 Wang Z, Ren J, Wang Z. Org. Lett. 2013; 15: 5682
  • 28 Xia X.-F, Song X.-R, Liu X.-Y, Liang Y.-M. Chem.–Asian J. 2012; 7: 1538
  • 29 Patil DV, Phun LH, France S. Org. Lett. 2010; 12: 5684
  • 30 Aponte-Guzmán JA, Taylor JE, Tillman JE, France S. Org. Lett. 2014; 16: 3788
  • 31 Patil DV, Cavitt MA, Grzybowski P, France S. Chem. Commun. (Cambridge) 2011; 47: 10278
  • 32 Brand C, Rauch G, Zanoni M, Dittrich B, Werz DB. J. Org. Chem. 2009; 74: 8779
  • 33 Zhang G, Huang X, Li G, Zhang L. J. Am. Chem. Soc. 2008; 130: 1814
  • 34 Bai Y, Tao W, Ren J, Wang Z. Angew. Chem. Int. Ed. 2012; 51: 4112
  • 35 Zhu J, Liang Y, Wang L, Zheng Z.-B, Houk KN, Tang Y. J. Am. Chem. Soc. 2014; 136: 6900
  • 36 Fisher EL, Wilkerson-Hill SM, Sarpong R. J. Am. Chem. Soc. 2012; 134: 9946
  • 37 Xu G.-C, Liu L.-P, Lu J.-M, Shi M. J. Am. Chem. Soc. 2005; 127: 14552
  • 38 Shi M, Wu L, Lu J.-M. J. Org. Chem. 2008; 73: 8344
  • 39 Li W, Yuan W, Pindi S, Shi M, Li G. Org. Lett. 2010; 12: 920
  • 40 Lu B.-L, Wei Y, Shi M. Chem.–Eur. J. 2010; 16: 10975
  • 41 Wu L, Shi M. Chem.–Eur. J. 2011; 17: 13160
  • 42 Yuan W, Tang X.-Y, Wei Y, Shi M. Chem.–Eur. J. 2014; 20: 3198
  • 43 Huang X, Su C, Liu Q, Song Y. Synlett 2008; 229
  • 44 Lu B.-L, Shi M. Angew. Chem. Int. Ed. 2011; 50: 12027
  • 45 Miao M, Cao J, Zhang J, Huang X, Wu L. J. Org. Chem. 2013; 78: 2687
  • 46 Miao M, Cao J, Zhang J, Huang X, Wu L. Org. Lett. 2012; 14: 2718
  • 47 Iwasawa N, Matsuo T, Iwamoto M, Ikeno T. J. Am. Chem. Soc. 1998; 120: 3903
  • 48 Markham JP, Staben ST, Toste FD. J. Am. Chem. Soc. 2005; 127: 9708
  • 49 Barluenga J, Tudela E, Vicente R, Ballesteros A, Tomás M. Angew. Chem. Int. Ed. 2011; 50: 2107
  • 50 Zhang Z, Tang X.-Y, Xu Q, Shi M. Chem.–Eur. J. 2013; 19: 10625
  • 51 Chen A, Lin R, Liu Q, Jiao N. Chem. Commun. (Cambridge) 2009; 6842
  • 52 Trost BM, Xie J, Maulide N. J. Am. Chem. Soc. 2008; 130: 17258
  • 53 Chen G, Zhang X.-N, Wei Y, Tang X.-Y, Shi M. Angew. Chem. Int. Ed. 2014; 53: 8492
  • 54 Lu Z, Shen M, Yoon TP. J. Am. Chem. Soc. 2011; 133: 1162
  • 55 Tsuritani T, Yamamoto Y, Kawasaki M, Mase T. Org. Lett. 2009; 11: 1043
  • 56 Liu L, Zhang J. Angew. Chem. Int. Ed. 2009; 48: 6093
  • 57 Xu H, Zhang W, Shu D, Werness JB, Tang W. Angew. Chem. Int. Ed. 2008; 47: 8933
  • 58 Liu R, Zhang M, Winston-McPherson G, Tang W. Chem. Commun. (Cambridge) 2013; 49: 4376
  • 59 Tomilov Yu. V, Shapiro EA, Protopopova MN, Ioffe AI, Dolgii IE, Nefedov OM. Izv. Akad. Nauk SSSR, Ser. Khim. 1985; 631 Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.) 1985; 34: 576
  • 60 Davies HML, Romines KR. Tetrahedron 1988; 44: 3343
  • 61 Padwa A, Kassir JM, Xu SL. J. Org. Chem. 1991; 56: 6971
  • 62 Müller P, Pautex N, Doyle MP, Bagheri V. Helv. Chim. Acta. 1990; 73: 1233
  • 63 Padwa A, Chiacchio U, Garreau Y, Kassir JM, Krumpe KE, Schoffstall AM. J. Org. Chem. 1990; 55: 414
  • 64 Padwa A, Straub CS. Org. Lett. 2000; 2: 2093
  • 65 Chuprakov S, Gevorgyan V. Org. Lett. 2007; 9: 4463
  • 66 Archambeau A, Meige F, Meyer C, Cossy J. Angew. Chem. Int. Ed. 2012; 51: 11540
  • 67 Zhang H, Li C, Xie G, Wang B, Zhang Y, Wang J. J. Org. Chem. 2014; 79: 6286
  • 68 Chen J, Ma S. Chem.–Asian J. 2010; 5: 2415
  • 69 Ma S, Zhang J. J. Am. Chem. Soc. 2003; 125: 12386
  • 70 Shao L.-X, Zhang Y.-P, Qi M.-H, Shi M. Org. Lett. 2007; 9: 117
  • 71 Zhu Z.-B, Shi M. Chem.–Eur. J. 2008; 14: 10219
  • 72 Miege F, Meyer C, Cossy J. Org. Lett. 2010; 12: 4144
  • 73 Miege F, Meyer C, Cossy J. Chem.–Eur. J. 2012; 18: 7810
  • 74 Li C, Zeng Y, Wang J. Tetrahedron Lett. 2009; 50: 2956
  • 75 Li C, Zeng Y, Zhang H, Fang J, Zhang Y, Wang J. Angew. Chem. Int. Ed. 2010; 49: 6413
  • 76 Evans PA, Inglesby PA. J. Am. Chem. Soc. 2012; 134: 3635
  • 77 Jung ME, Chang JJ. Org. Lett. 2010; 12: 2962
  • 78 Heathcock CH, Blumenkopf TA, Smith KM. J. Org. Chem. 1989; 54: 1548
  • 79 Zhang M, Huang X, Shen L, Qin Y. J. Am. Chem. Soc. 2009; 131: 6013
  • 80 Liu R, Zhang M, Wyche TP, Winston-McPherson GN, Bugni TS, Tang W. Angew. Chem. Int. Ed. 2012; 51: 7503