Gao, S. et al.: 2016 Science of Synthesis, 2016/4a: Metal-Catalyzed Cyclization Reactions 1 DOI: 10.1055/sos-SD-221-00127
Metal-Catalyzed Cyclization Reactions 1

1.5 Cyclization Reactions of Alkenes and Alkynes

Weitere Informationen

Buch

Herausgeber: Gao, S.; Ma, S.

Autoren: Alderson, J.; Beccalli, E. M.; Bonetti, A.; Gao, S.; Guiry, P.; Jammi, S.; Mazza, A.; Nottingham, C.; Phelps, A.; Schomaker, J. M.; Shi, M.; Tang, X.-Y.; Wang, D.; Yamamoto, Y.; You, S. ; Zhang, L.; Zhang, X.

Titel: Metal-Catalyzed Cyclization Reactions 1

Print ISBN: 9783131998613; Online ISBN: 9783132403406; Buch-DOI: 10.1055/b-003-129294

Fachgebiete: Organische Chemie;Chemische Reaktionen, Katalyse;Organometallchemie;Chemische Labormethoden, Stöchiometrie

Science of Synthesis Reference Libraries



Übergeordnete Publikation

Titel: Science of Synthesis

DOI: 10.1055/b-00000101

Reihenherausgeber: Carreira, E. M.; Decicco, C. P.; Fürstner, A.; Koch, G.; Molander, G.; Schaumann, E.; Shibasaki, M.; Thomas, E. J.; Trost, B. M.

Typ: Mehrbändiges Werk

 


Abstract

Discussed in this chapter are two classes of metal-catalyzed cyclization reactions of alkenes and alkynes, namely one where unactivated carbon–carbon double or triple bonds act as nucleophiles to attack tethered electrophiles, and the other where the π-system is activated by a metal-based π-acid and is subsequently attacked by carbonucleophiles. In the former scenario, the in situ generation of electrophiles is typically promoted by hard Lewis acid catalysts, which initiate Prins, aza-Prins, or carbonyl-ene reactions. In the latter scenario, the coordination of a carbon–carbon double or triple bond to a soft Lewis acidic metal catalyst lowers the energy of the π* orbital and thereby enables attack by nucleophiles. A large array of cyclic structural motifs are accessible, many in a stereoselective manner, via such metal catalysis. These motifs, including tetrahydrofurans, tetrahydropyrans, cycloalkenes, dihydronaphthalenes, carbazoles, coumarins, quinolinones, benzopyrans, dihydroquinolines, and phenanthrenes, are essential components of various bioactive compounds and natural products. Exemplary applications of these methods in the syntheses of natural products and relevant structures are also discussed.

 
  • 1 Pastor IM, Yus M. Curr. Org. Chem. 2007; 11: 925
  • 2 Clarke ML, France MB. Tetrahedron 2008; 64: 9003
  • 3 Snider BB, In Comprehensive Organic Synthesis Trost BM, Fleming I. Pergamon Oxford 1991; Vol. 2 527
  • 4 Zhang W.-C, Viswanathan GS, Li C.-J. Chem. Commun. (Cambridge) 1999; 291
  • 5 Miranda PO, Carballo RM, Martín VS, Padrón JI. Org. Lett. 2009; 11: 357
  • 6 Tadpetch K, Rychnovsky SD. Org. Lett. 2008; 10: 4839
  • 7 Reddy BVS, Jalal S, Kumar Singarapu K. RSC Adv. 2014; 4: 16739
  • 8 Lalli C, van de Weghe P. Chem. Commun. (Cambridge) 2014; 50: 7495
  • 9 Li B, Lai Y.-C, Zhao Y, Wong Y.-H, Shen Z.-L, Loh T.-P. Angew. Chem. Int. Ed. 2012; 51: 10619
  • 10 Nakamura M, Niiyama K, Yamakawa T. Tetrahedron Lett. 2009; 50: 6462
  • 11 Zheng K, Shi J, Liu X, Feng X. J. Am. Chem. Soc. 2008; 130: 15770
  • 12 Zheng K, Liu X, Qin S, Xie M, Lin L, Hu C, Feng X. J. Am. Chem. Soc. 2012; 134: 17564
  • 13 Miranda PO, Ramírez MA, Martín VS, Padrón JI. Chem.–Eur. J. 2008; 14: 6260
  • 14 Xu T, Yang Q, Li D, Dong J, Yu Z, Li Y. Chem.–Eur. J. 2010; 16: 9264
  • 15 Nakatani Y, Kawashima K. Synthesis 1978; 147
  • 16 Kočovský P, Ahmed G, Šrogl J, Malkov AV, Steele J. J. Org. Chem. 1999; 64: 2765
  • 17 Yang D, Yang M, Zhu N.-Y. Org. Lett. 2003; 5: 3749
  • 18 Grachan ML, Tudge MT, Jacobsen EN. Angew. Chem. Int. Ed. 2008; 47: 1469
  • 19 Rajapaksa NS, Jacobsen EN. Org. Lett. 2013; 15: 4238
  • 20 Carballo RM, Valdomir G, Purino M, Martín VS, Padrón JI. Eur. J. Org. Chem. 2010; 2304
  • 21 Reddy BVS, Borkar P, Chakravarthy PP, Yadav JS, Gree R. Tetrahedron Lett. 2010; 51: 3412
  • 22 Conia JM, Le Perchec P. Synthesis 1975; 1
  • 23 Patil NT, Kavthe RD, Shinde VS. Tetrahedron 2012; 68: 8079
  • 24 Pei T, Widenhoefer RA. J. Am. Chem. Soc. 2001; 123: 11290
  • 25 Pei T, Widenhoefer RA. Chem. Commun. (Cambridge) 2002; 650
  • 26 Wang X, Pei T, Han X, Widenhoefer RA. Org. Lett. 2003; 5: 2699
  • 27 Yang D, Li J.-H, Gao Q, Yan Y.-L. Org. Lett. 2003; 5: 2869
  • 28 Xiao Y.-P, Liu X.-Y, Che C.-M. Angew. Chem. Int. Ed. 2011; 50: 4937
  • 29 Zhou C.-Y, Che C.-M. J. Am. Chem. Soc. 2007; 129: 5828
  • 30 Kennedy-Smith JJ, Staben ST, Toste FD. J. Am. Chem. Soc. 2004; 126: 4526
  • 31 Staben ST, Kennedy-Smith JJ, Toste FD. Angew. Chem. Int. Ed. 2004; 43: 5350
  • 32 Ito H, Makida Y, Ochida A, Ohmiya H, Sawamura M. Org. Lett. 2008; 10: 5051
  • 33 Gao Q, Zheng B.-F, Li J.-H, Yang D. Org. Lett. 2005; 7: 2185
  • 34 Deng C.-L, Song R.-J, Liu Y.-L, Li J.-H. Adv. Synth. Catal. 2009; 351: 3096
  • 35 Deng C.-L, Zou T, Wang Z.-Q, Song R.-J, Li J.-H. J. Org. Chem. 2009; 74: 412
  • 36 Chan LY, Kim S, Park Y, Lee PH. J. Org. Chem. 2012; 77: 5239
  • 37 Bandini M, Emer E, Tommasi S, Umani-Ronchi A. Eur. J. Org. Chem. 2006; 3527
  • 38 de Mendoza P, Echavarren AM. Pure Appl. Chem. 2010; 82: 801
  • 39 Kitamura T. Eur. J. Org. Chem. 2009; 1111
  • 40 Yamamoto Y. Chem. Soc. Rev. 2014; 43: 1575
  • 41 Evans DA, Fandrick KR, Song H.-J. J. Am. Chem. Soc. 2005; 127: 8942
  • 42 Agnusdei M, Bandini M, Melloni A, Umani-Ronchi A. J. Org. Chem. 2003; 68: 7126
  • 43 Youn SW, Pastine SJ, Sames D. Org. Lett. 2004; 6: 581
  • 44 Zhang H, Ferreira EM, Stoltz BM. Angew. Chem. Int. Ed. 2004; 43: 6144
  • 45 Ferreira EM, Stoltz BM. J. Am. Chem. Soc. 2003; 125: 9578
  • 46 Namba K, Yamamoto H, Sasaki I, Mori K, Imagawa H, Nishizawa M. Org. Lett. 2008; 10: 1767
  • 47 Biannic B, Aponick A. Eur. J. Org. Chem. 2011; 6605
  • 48 Bandini M, Eichholzer A. Angew. Chem. Int. Ed. 2009; 48: 9533
  • 49 Nishizawa M, Takao H, Yadav VK, Imagawa H, Sugihara T. Org. Lett. 2003; 5: 4563
  • 50 Gorin DJ, Dubé P, Toste FD. J. Am. Chem. Soc. 2006; 128: 14480
  • 51 Dal Zotto C, Wehbe J, Virieux D, Campagne J.-M. Synlett 2008; 2033
  • 52 Eom D, Mo J, Lee PH, Gao Z, Kim S. Eur. J. Org. Chem. 2013; 533
  • 53 Fürstner A, Mamane V. J. Org. Chem. 2002; 67: 6264
  • 54 Lim W, Rhee YH. Eur. J. Org. Chem. 2013; 460
  • 55 Carreras J, Gopakumar G, Gu L, Gimeno A, Linowski P, Petuskova J, Thiel W, Alcarazo M. J. Am. Chem. Soc. 2013; 135: 18815
  • 56 Komeyama K, Igawa R, Takaki K. Chem. Commun. (Cambridge) 2010; 46: 1748
  • 57 Bruneau C, Dixneuf PH. Acc. Chem. Res. 1999; 32: 311
  • 58 Bruneau C, Dixneuf PH. Metal Vinylidenes and Allenylidenes in Catalysis: From Reactivity to Applications in Synthesis. Wiley-VCH; Weinheim, Germany 2008
  • 59 Shen H.-C, Tang J.-M, Chang H.-K, Yang C.-W, Liu R.-S. J. Org. Chem. 2005; 70: 10113
  • 60 Qiu Y, Kong W, Fu C, Ma S. Org. Lett. 2012; 14: 6198
  • 61 Jia C, Piao D, Oyamada J, Lu W, Kitamura T, Fujiwara Y. Science (Washington, D. C.) 2000; 287: 1992
  • 62 Jia C, Piao D, Kitamura T, Fujiwara Y. J. Org. Chem. 2000; 65: 7516
  • 63 Yoon MY, Kim JH, Choi DS, Shin US, Lee JY, Song CE. Adv. Synth. Catal. 2007; 349: 1725
  • 64 Shi Z, He C. J. Org. Chem. 2004; 69: 3669
  • 65 Herrero-Gómez E, Nieto-Oberhuber C, López S, Benet-Buchholz J, Echavarren AM. Angew. Chem. Int. Ed. 2006; 45: 5455
  • 66 Menon RS, Findlay AD, Bissember AC, Banwell MG. J. Org. Chem. 2009; 74: 8901
  • 67 Cervi A, Aillard P, Hazeri N, Petit L, Chai CLL, Willis AC, Banwell MG. J. Org. Chem. 2013; 78: 9876
  • 68 Harris EBJ, Banwell MG, Willis AC. Tetrahedron Lett. 2011; 52: 6887
  • 69 Nevado C, Echavarren AM. Chem.–Eur. J. 2005; 11: 3155
  • 70 Martín-Matute B, Nevado C, Cárdenas DJ, Echavarren AM. J. Am. Chem. Soc. 2003; 125: 5757
  • 71 Pastine SJ, Youn SW, Sames D. Tetrahedron 2003; 59: 8859
  • 72 Pastine SJ, Sames D. Org. Lett. 2003; 5: 4053
  • 73 Morán-Poladura P, Suárez-Pantiga S, Piedrafita M, Rubio E, González JM. J. Organomet. Chem. 2011; 696: 12
  • 74 Ye L, Wang Y, Aue DH, Zhang L. J. Am. Chem. Soc. 2012; 134: 31
  • 75 Ferrer C, Amijs CH. M, Echavarren AM. Chem.–Eur. J. 2007; 13: 1358
  • 76 Ferrer C, Echavarren AM. Angew. Chem. Int. Ed. 2006; 45: 1105
  • 77 Loh CCJ, Badorrek J, Raabe G, Enders D. Chem.–Eur. J. 2011; 17: 13409
  • 78 Xu S, Zhou Y, Xu J, Jiang H, Liu H. Green Chem. 2013; 15: 718
  • 79 Heffernan SJ, Tellam JP, Queru ME, Silvanus AC, Benito D, Mahon MF, Hennessy AJ, Andrews BI, Carbery DR. Adv. Synth. Catal. 2013; 355: 1149
  • 80 Xie X, Du X, Chen Y, Liu Y. J. Org. Chem. 2011; 76: 9175
  • 81 Han X, Peh G, Floreancig PE. Eur. J. Org. Chem. 2013; 1193
  • 82 Overman LE, Pennington LD. J. Org. Chem. 2003; 68: 7143
  • 83 Corminboeuf O, Overman LE, Pennington LD. J. Am. Chem. Soc. 2003; 125: 6650
  • 84 England DB, Padwa A. Org. Lett. 2008; 10: 3631
  • 85 Ferrer C, Escribano-Cuesta A, Echavarren AM. Tetrahedron 2009; 65: 9015