Gao, S. et al.: 2016 Science of Synthesis, 2016/4a: Metal-Catalyzed Cyclization Reactions 1 DOI: 10.1055/sos-SD-221-00127
Metal-Catalyzed Cyclization Reactions 1

1.5 Cyclization Reactions of Alkenes and Alkynes

More Information

Book

Editors: Gao, S.; Ma, S.

Authors: Alderson, J.; Beccalli, E. M.; Bonetti, A.; Gao, S.; Guiry, P.; Jammi, S.; Mazza, A.; Nottingham, C.; Phelps, A.; Schomaker, J. M.; Shi, M.; Tang, X.-Y.; Wang, D.; Yamamoto, Y.; You, S. ; Zhang, L.; Zhang, X.

Title: Metal-Catalyzed Cyclization Reactions 1

Print ISBN: 9783131998613; Online ISBN: 9783132403406; Book DOI: 10.1055/b-003-129294

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Carreira, E. M.; Decicco, C. P.; Fürstner, A.; Koch, G.; Molander, G.; Schaumann, E.; Shibasaki, M.; Thomas, E. J.; Trost, B. M.

Type: Multivolume Edition

 


Abstract

Discussed in this chapter are two classes of metal-catalyzed cyclization reactions of alkenes and alkynes, namely one where unactivated carbon–carbon double or triple bonds act as nucleophiles to attack tethered electrophiles, and the other where the π-system is activated by a metal-based π-acid and is subsequently attacked by carbonucleophiles. In the former scenario, the in situ generation of electrophiles is typically promoted by hard Lewis acid catalysts, which initiate Prins, aza-Prins, or carbonyl-ene reactions. In the latter scenario, the coordination of a carbon–carbon double or triple bond to a soft Lewis acidic metal catalyst lowers the energy of the π* orbital and thereby enables attack by nucleophiles. A large array of cyclic structural motifs are accessible, many in a stereoselective manner, via such metal catalysis. These motifs, including tetrahydrofurans, tetrahydropyrans, cycloalkenes, dihydronaphthalenes, carbazoles, coumarins, quinolinones, benzopyrans, dihydroquinolines, and phenanthrenes, are essential components of various bioactive compounds and natural products. Exemplary applications of these methods in the syntheses of natural products and relevant structures are also discussed.

 
  • 3 Snider BB, In Comprehensive Organic Synthesis Trost BM, Fleming I. Pergamon Oxford 1991; Vol. 2 527
  • 4 Zhang W.-C, Viswanathan GS, Li C.-J. Chem. Commun. (Cambridge) 1999; 291
  • 15 Nakatani Y, Kawashima K. Synthesis 1978; 147
  • 20 Carballo RM, Valdomir G, Purino M, Martín VS, Padrón JI. Eur. J. Org. Chem. 2010; 2304
  • 22 Conia JM, Le Perchec P. Synthesis 1975; 1
  • 25 Pei T, Widenhoefer RA. Chem. Commun. (Cambridge) 2002; 650
  • 37 Bandini M, Emer E, Tommasi S, Umani-Ronchi A. Eur. J. Org. Chem. 2006; 3527
  • 39 Kitamura T. Eur. J. Org. Chem. 2009; 1111
  • 47 Biannic B, Aponick A. Eur. J. Org. Chem. 2011; 6605
  • 51 Dal Zotto C, Wehbe J, Virieux D, Campagne J.-M. Synlett 2008; 2033
  • 52 Eom D, Mo J, Lee PH, Gao Z, Kim S. Eur. J. Org. Chem. 2013; 533
  • 54 Lim W, Rhee YH. Eur. J. Org. Chem. 2013; 460
  • 55 Carreras J, Gopakumar G, Gu L, Gimeno A, Linowski P, Petuskova J, Thiel W, Alcarazo M. J. Am. Chem. Soc. 2013; 135: 18815
  • 58 Bruneau C, Dixneuf PH. Metal Vinylidenes and Allenylidenes in Catalysis: From Reactivity to Applications in Synthesis. Wiley-VCH; Weinheim, Germany 2008
  • 73 Morán-Poladura P, Suárez-Pantiga S, Piedrafita M, Rubio E, González JM. J. Organomet. Chem. 2011; 696: 12
  • 79 Heffernan SJ, Tellam JP, Queru ME, Silvanus AC, Benito D, Mahon MF, Hennessy AJ, Andrews BI, Carbery DR. Adv. Synth. Catal. 2013; 355: 1149
  • 81 Han X, Peh G, Floreancig PE. Eur. J. Org. Chem. 2013; 1193