Gao, S. et al.: 2016 Science of Synthesis, 2016/4b: Metal-Catalyzed Cyclization Reactions 2 DOI: 10.1055/sos-SD-222-00100
Metal-Catalyzed Cyclization Reactions 2

2.4 1,3-Dipolar Cycloadditions Involving Carbonyl or Azomethine Ylides

More Information

Book

Editors: Gao, S.; Ma, S.

Authors: Bora, U.; Dominguez, G.; Du, H.; Garve, L.; Harmata, M.; Hu, W.; Jones, D. E.; Lee, D.; Li, X.; Mondal, M.; Pérez Castells, J.; Sabbasani, V. R.; Shibata, Y.; Tanaka, K.; Tang, W.; Werz, D. B.; Xia, F.; Xu, X.; Ye, S.

Title: Metal-Catalyzed Cyclization Reactions 2

Print ISBN: 9783131998118; Online ISBN: 9783132404823; Book DOI: 10.1055/b-004-129734

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Carreira, E. M.; Decicco, C. P.; Fürstner, A.; Koch, G.; Molander, G.; Schaumann, E.; Shibasaki, M.; Thomas, E. J.; Trost, B. M.

Type: Multivolume Edition

 


Abstract

Carbonyl ylides, which behave as active 1,3-dipole species, have found numerous applications in organic synthesis, especially in the formation of five-membered heterocycles. Among the versatile transformations of carbonyl ylides, 1,3-dipolar cycloadditions with π-bonds, including (3 + 2)-cycloaddition reactions with carbon–carbon π-bonds, aldehydes, and imines, are ubiquitous and important reactions. This chapter focuses on recent advances in these catalytic (3 + 2)-cycloaddition reactions and the examples presented emphasize the chemo-, diastereo-, and enantiocontrol that can be achieved. Also described are selected examples of cycloaddition reactions with azomethine ylides, which behave with similar reactivity to carbonyl ylides, to give the corresponding N-heterocycles. In addition, some selected applications of these (3 + 2)-cycloaddition reactions in natural product synthesis are highlighted.

 
  • 3 Wang J, In Comprehensive Organometallic Chemistry III Crabtree RH, Mingos DMP. Elsevier Oxford 2007; Vol 11 159–163
  • 6 Bentabed-Ababsa G, Hamza-Reguig S, Derdour A, Domingo LR, Sáez JA, Roisnel T, Dorcet V, Nassar E, Mongin F. Org. Biomol. Chem. 2012; 10: 8434
  • 14 Tsutsui H, Shimada N, Abe T, Anada M, Nakajima M, Nakamura S, Nambu H, Hashimoto S. Adv. Synth. Catal. 2007; 349: 521
  • 44 Zhou C.-Y, Huang J.-S, Che C.-M. Synlett 2010; 2681
  • 47 Yan M, Jacobsen N, Hu W, Gronenberg LS, Doyle MP, Colyer JT, Bykowski D. Angew. Chem. 2004; 116: 6881 Angew. Chem. Int. Ed. 2004; 43: 6713
  • 56 Herbert RB, In The Chemistry of Heterocyclic Compounds. Saxton JE. Wiley; Chichester, UK 1994. Vol. 25. Part 4, Chapter 1.
  • 57 Toyota M, Ihara M. Nat. Prod. Rep. 1998; 327