2.10 Ring-Closing Metathesis
Book
Editors: Gao, S.; Ma, S.
Title: Metal-Catalyzed Cyclization Reactions 2
Print ISBN: 9783131998118; Online ISBN: 9783132404823; Book DOI: 10.1055/b-004-129734
1st edition © 2016 Georg Thieme Verlag KG
Georg Thieme Verlag, Stuttgart
Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry
Science of Synthesis Reference Libraries
Parent publication
Title: Science of Synthesis
DOI: 10.1055/b-00000101
Series Editors: Carreira, E. M.; Decicco, C. P.; Fürstner, A.; Koch, G.; Molander, G.; Schaumann, E.; Shibasaki, M.; Thomas, E. J.; Trost, B. M.
Type: Multivolume Edition
Abstract
Ring-closing metathesis (RCM) has emerged as a powerful synthetic tool. Depending on the unsaturated functional groups involved, ring-closing-metathesis reactions are classified into three categories: diene ring-closing metathesis, enyne ring-closing metathesis, and diyne ring-closing metathesis. These are mediated/catalyzed by metal alkylidenes or alkylidynes to form cyclic alkenes or alkynes, with ring sizes ranging from small to large, and including both carbocycles and heterocycles. Mechanistically, diene and diyne ring-closing metathesis involves an exchange reaction between the participating alkenes or alkynes, whereas enyne ring-closing metathesis involves a formal addition reaction between an alkene and an alkyne. This chapter summarizes the distinctive features of these different ring-closing metathesis processes in terms of the advancement of mechanistic understanding and the development of effective catalyst systems and their application to natural product synthesis.
Key words
diene metathesis - diyne metathesis - enyne metathesis - ring-closing metathesis - ring rearrangement - ruthenium alkylidenes - metallotropic shift - molybdenum alkylidenes - molybdenum alkylidynes- 16 Akiyama M, Chisholm MH, Cotton FA, Extine MW, Haitko DA, Little D, Fanwick PE. Inorg. Chem. 1979; 18: 2266
- 18 Urbina-Blanco CA, Poater A, Lebl T, Manzini S, Slawin AMZ, Cavallo L, Nolan SP. J. Am. Chem. Soc. 2013; 135: 7073
- 23 Matsui R, Seto K, Fujita K, Suzuki T, Nakazaki A, Kobayashi S. Angew. Chem. Int. Ed. 2010; 49: 10068
- 24 Fürstner A, Radkowski K, Wirtz C, Goddard R, Lehmann CW, Mynott R. J. Am. Chem. Soc. 2002; 124: 7061
- 26 Meng D, Su D.-S, Balog A, Bertinato P, Sorensen AJ, Danishefsky SJ, Zheng Y.-H, Chou T.-C, He L, Horwitz SB. J. Am. Chem. Soc. 1997; 119: 2733
- 31 Yu M, Wang C, Kyle AF, Jakubec P, Dixon DJ, Schrock RR, Hoveyda AH. Nature (London) 2011; 479: 88
- 32 Wang Y, Jimenez M, Hansen AS, Raiber E.-A, Schreiber SL, Young DW. J. Am. Chem. Soc. 2011; 133: 9196
- 52 La DS, Alexander JB, Cefalo DR, Graf DD, Hoveyda AH, Schrock RR. J. Am. Chem. Soc. 1998; 120: 9720
- 54 Zhu SS, Cefalo DR, La DS, Jamieson JY, Davis WM, Hoveyda AH, Schrock RR. J. Am. Chem. Soc. 1999; 121: 8251
- 63 Hanessian S, Margarita R, Hall A, Johnstone S, Tremblay M, Parlanti L. J. Am. Chem. Soc. 2002; 124: 13342
- 76 Nagatomo M, Koshimizu M, Masuda K, Tabuchi T, Urabe D, Inoue M. J. Am. Chem. Soc. 2014; 136: 5916
- 80 Nickel A, Maruyama T, Tang H, Murphy PD, Greene B, Yusuff N, Wood JL. J. Am. Chem. Soc. 2004; 126: 16300
- 82 Ohyoshi T, Funakubo S, Miyazawa Y, Niida K, Hayakawa I, Kigoshi H. Angew. Chem. Int. Ed. 2012; 51: 4972
- 84 Kalidindi S, Jeong WB, Schall A, Bandichhor R, Nosse B, Reiser O. Angew. Chem. Int. Ed. 2007; 46: 6361
- 85 Willot M, Radtke L, Könning D, Fröhlich R, Gessner VH, Strohmann C, Christmann M. Angew. Chem. Int. Ed. 2009; 48: 9105
- 97 Burton JW, Clark JS, Derrer S, Stork TC, Bendall JG, Holmes AB. J. Am. Chem. Soc. 1997; 119: 7483
- 101 Matsui R, Seto K, Sato Y, Suzuki T, Nakazaki A, Kobayashi S. Angew. Chem. Int. Ed. 2011; 50: 680
- 104 Larrosa I, Da Silva MI, Gómez PM, Hannen P, Ko E, Lenger SR, Linke SR, White AJP, Wilton D, Barrett AGM. J. Am. Chem. Soc. 2006; 128: 14042
- 110 Becker J, Butt L, von Kiedrowski V, Mischler E, Quentin F, Hiersemann M. Org. Lett. 2013; 15: 5982
- 116 Hayashi Y, Shoji M, Ishikawa H, Yamaguchi J, Tamaru T, Imai H, Nishigaya Y, Takabe K, Kakeya H, Osada H. Angew. Chem. Int. Ed. 2008; 47: 6657
- 119 Fujiwara K, Suzuki Y, Koseki N, Aki Y.-I, Kikuchi Y, Murata F, Yamamoto F, Kawamura M, Norikura T, Matsue H, Murai A, Katoono R, Kawai H, Suzuki T. Angew. Chem. Int. Ed. 2014; 53: 780
- 120 Hara A, Morimoto R, Iwasaki Y, Saitoh T, Ishikawa Y, Nishiyama S. Angew. Chem. Int. Ed. 2012; 51: 9877
- 147 Clavier H, Correa A, Escudero-Adán EC, Benet-Buchholz J, Cavallo L, Nolan SP. Chem.–Eur. J. 2009; 15: 10244
- 149 Nuñez-Zarur F, Solans-Monfort X, Rodríguez-Santiago L, Pleixats R, Sodupe M. Chem.–Eur. J. 2011; 17: 7506
- 153 Timmer MSM, Ovaa H, Filippov DV, van der Marel GA, van Boom JH. Tetrahedron Lett. 2001; 42: 8231
- 205 McCullough LG, Listemann ML, Schrock RR, Churchill MR, Ziller JW. J. Am. Chem. Soc. 1983; 105: 6729
- 208 Aguilera B, Wolf LB, Nieczypor P, Rutjes FPJT, Overkleeft HS, van Hest JCM, Schoemaker HE, Wang B, Mol JC, Fürstner A, Overhand M, van der Marel GA, van Boom JH. J. Org. Chem. 2001; 66: 3584
- 210 IJsselstijn M, Aguilera B, van der Marel GA, van Boom JH, van Delft FL, Schoemaker HE, Overkleeft HS, Rutjes FPJT, Overhand M. Tetrahedron Lett. 2004; 45: 4379
- 226 Freudenberger JH, Schrock RR, Churchill MR, Rheingold AL, Ziller JW. Organometallics 1984; 3: 1563
- 227 Bindl M, Stade R, Heilmann EK, Picot A, Goddard R, Fürstner A. J. Am. Chem. Soc. 2009; 131: 9468
- 228 Kyle AF, Jakubec P, Cockfield DM, Cleator E, Skidmore J, Dixon DJ. Chem. Commun. (Cambridge) 2011; 47: 10037
- 235 Micoine K, Persich P, Llaveria J, Lam M.-H, Maderna A, Loganzo F, Fürstner A. Chem.–Eur. J. 2013; 19: 7370