Gao, S. et al.: 2016 Science of Synthesis, 2016/4b: Metal-Catalyzed Cyclization Reactions 2 DOI: 10.1055/sos-SD-222-00346
Metal-Catalyzed Cyclization Reactions 2

2.10 Ring-Closing Metathesis

More Information

Book

Editors: Gao, S.; Ma, S.

Authors: Bora, U.; Dominguez, G.; Du, H.; Garve, L.; Harmata, M.; Hu, W.; Jones, D. E.; Lee, D.; Li, X.; Mondal, M.; Pérez Castells, J.; Sabbasani, V. R.; Shibata, Y.; Tanaka, K.; Tang, W.; Werz, D. B.; Xia, F.; Xu, X.; Ye, S.

Title: Metal-Catalyzed Cyclization Reactions 2

Print ISBN: 9783131998118; Online ISBN: 9783132404823; Book DOI: 10.1055/b-004-129734

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Carreira, E. M.; Decicco, C. P.; Fürstner, A.; Koch, G.; Molander, G.; Schaumann, E.; Shibasaki, M.; Thomas, E. J.; Trost, B. M.

Type: Multivolume Edition

 


Abstract

Ring-closing metathesis (RCM) has emerged as a powerful synthetic tool. Depending on the unsaturated functional groups involved, ring-closing-metathesis reactions are classified into three categories: diene ring-closing metathesis, enyne ring-closing metathesis, and diyne ring-closing metathesis. These are mediated/catalyzed by metal alkylidenes or alkylidynes to form cyclic alkenes or alkynes, with ring sizes ranging from small to large, and including both carbocycles and heterocycles. Mechanistically, diene and diyne ring-closing metathesis involves an exchange reaction between the participating alkenes or alkynes, whereas enyne ring-closing metathesis involves a formal addition reaction between an alkene and an alkyne. This chapter summarizes the distinctive features of these different ring-closing metathesis processes in terms of the advancement of mechanistic understanding and the development of effective catalyst systems and their application to natural product synthesis.

 
  • 13 Kinoshita A, Mori M. Synlett 1994; 1020
  • 16 Akiyama M, Chisholm MH, Cotton FA, Extine MW, Haitko DA, Little D, Fanwick PE. Inorg. Chem. 1979; 18: 2266
  • 26 Meng D, Su D.-S, Balog A, Bertinato P, Sorensen AJ, Danishefsky SJ, Zheng Y.-H, Chou T.-C, He L, Horwitz SB. J. Am. Chem. Soc. 1997; 119: 2733
  • 28 Arisawa M, Kato C, Kaneko H, Nishida A, Nakagawa M. J. Chem. Soc., Perkin Trans. 1 2000; 1873
  • 31 Yu M, Wang C, Kyle AF, Jakubec P, Dixon DJ, Schrock RR, Hoveyda AH. Nature (London) 2011; 479: 88
  • 49 Huwe CM, Blechert S. Synthesis 1997; 61
  • 54 Zhu SS, Cefalo DR, La DS, Jamieson JY, Davis WM, Hoveyda AH, Schrock RR. J. Am. Chem. Soc. 1999; 121: 8251
  • 85 Willot M, Radtke L, Könning D, Fröhlich R, Gessner VH, Strohmann C, Christmann M. Angew. Chem. Int. Ed. 2009; 48: 9105
  • 91 Krafft ME, Cheung Y.-Y, Juliano-Capucao CA. Synthesis 2000; 1020
  • 97 Burton JW, Clark JS, Derrer S, Stork TC, Bendall JG, Holmes AB. J. Am. Chem. Soc. 1997; 119: 7483
  • 104 Larrosa I, Da Silva MI, Gómez PM, Hannen P, Ko E, Lenger SR, Linke SR, White AJP, Wilton D, Barrett AGM. J. Am. Chem. Soc. 2006; 128: 14042
  • 109 Kurata K, Taniguchi K, Shiraishi K, Hayama N, Tanaka I, Suzuki M. Chem. Lett. 1989; 267
  • 116 Hayashi Y, Shoji M, Ishikawa H, Yamaguchi J, Tamaru T, Imai H, Nishigaya Y, Takabe K, Kakeya H, Osada H. Angew. Chem. Int. Ed. 2008; 47: 6657
  • 119 Fujiwara K, Suzuki Y, Koseki N, Aki Y.-I, Kikuchi Y, Murata F, Yamamoto F, Kawamura M, Norikura T, Matsue H, Murai A, Katoono R, Kawai H, Suzuki T. Angew. Chem. Int. Ed. 2014; 53: 780
  • 128 Böhrsch V, Blechert S. Chem. Commun. (Cambridge) 2006; 1968
  • 129 Stragies R, Blechert S. Synlett 1998; 169
  • 147 Clavier H, Correa A, Escudero-Adán EC, Benet-Buchholz J, Cavallo L, Nolan SP. Chem.–Eur. J. 2009; 15: 10244
  • 149 Nuñez-Zarur F, Solans-Monfort X, Rodríguez-Santiago L, Pleixats R, Sodupe M. Chem.–Eur. J. 2011; 17: 7506
  • 152 Choi T.-L, Grubbs RH. Chem. Commun. (Cambridge) 2001; 2648
  • 153 Timmer MSM, Ovaa H, Filippov DV, van der Marel GA, van Boom JH. Tetrahedron Lett. 2001; 42: 8231
  • 159 Matsuda T, Yamaguchi Y, Murakami M. Synlett 2008; 561
  • 194 Kress S, Weckesser J, Schulz SR, Blechert S. Eur. J. Org. Chem. 2013; 1346
  • 197 Spandl RJ, Rudyk H, Spring DR. Chem. Commun. (Cambridge) 2008; 3001
  • 202 Fürstner A, Davies PW. Chem. Commun. (Cambridge) 2005; 2307
  • 205 McCullough LG, Listemann ML, Schrock RR, Churchill MR, Ziller JW. J. Am. Chem. Soc. 1983; 105: 6729
  • 208 Aguilera B, Wolf LB, Nieczypor P, Rutjes FPJT, Overkleeft HS, van Hest JCM, Schoemaker HE, Wang B, Mol JC, Fürstner A, Overhand M, van der Marel GA, van Boom JH. J. Org. Chem. 2001; 66: 3584
  • 210 IJsselstijn M, Aguilera B, van der Marel GA, van Boom JH, van Delft FL, Schoemaker HE, Overkleeft HS, Rutjes FPJT, Overhand M. Tetrahedron Lett. 2004; 45: 4379
  • 219 Fürstner A, Mathes C, Grela K. Chem. Commun. (Cambridge) 2001; 1057
  • 226 Freudenberger JH, Schrock RR, Churchill MR, Rheingold AL, Ziller JW. Organometallics 1984; 3: 1563
  • 229 Fürstner A, Radkowski K. Chem. Commun. (Cambridge) 2002; 2182