2.3 Water as an Oxygen Source for Oxidation Reactions
Buch
Herausgeber: Muñiz, K.
Titel: Catalytic Oxidation in Organic Synthesis
Print ISBN: 9783132012318; Online ISBN: 9783132403710; Buch-DOI: 10.1055/b-003-129345
1st edition © 2018. Thieme. All rights reserved.
Georg Thieme Verlag KG, Stuttgart
Fachgebiete: Organische Chemie;Chemische Reaktionen, Katalyse;Organometallchemie;Chemische Labormethoden, Stöchiometrie
Science of Synthesis Reference Libraries
Übergeordnete Publikation
Titel: Science of Synthesis
DOI: 10.1055/b-00000101
Reihenherausgeber: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Koch, G.; Molander, G. A.; Schaumann, E.; Shibasaki, M.; Thomas, E. J.; Trost, B. M.
Typ: Mehrbändiges Werk
Abstract


The use of water as oxygen source for the catalytic oxidation of organic substrates is a clean alternative to the commonly used methods that utilize oxidizing agents based on contaminant metals such as chromium or manganese. In this chapter, a detailed description of the thermodynamic requirements of this type of reaction is given, with particular emphasis on the so-called organic-substrate-assisted water splitting (OSA-WS) reaction that generates hydrogen gas as the only byproduct of the reaction. Important considerations regarding the metal catalyst needed to perform these reactions are discussed, followed by specific examples described in the literature. Among them, are examples of epoxidation of alkenes, oxidation of sulfides to sulfoxides, and oxidation of alcohols to the corresponding carboxylic acids. In some cases, the energy input to perform the reaction comes from visible light by using photosensitizers or semiconductors as light-harvesting agents. Finally, two examples of photoelectrochemical cells (PECs) are described, where light-induced oxidation and reduction half reactions take place in separate compartments. This design provides an easy-to-process reaction where the oxidized organic compound and hydrogen gas byproduct are generated in independent compartments, and at the same time avoids undesired side reactions that may occur as a result of the mixture.
Schlüsselwörter
water - oxidation - catalysts - sulfides - sulfoxides - alcohols - alkenes - epoxidation - styrene - light as energy source - photosensitizers - semiconductors - green chemistry - atom economy - proton-coupled electron transfer (PCET) - ruthenium–aqua complexes - pincer ligands - metal–ligand cooperation- 1 Greenwood NN, Earnshaw A. Chemistry of the Elements. Elsevier Butterworth-Heinemann; Amsterdam 1997
- 4 The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs. National Academies; Washington, DC 2004
- 9 Bauer K, Garbe D, Surburg H. Common Fragrance and Flavor Materials. Wiley-VCH; Weinheim, Germany 1997
- 10 Sienel G, Rieth R, Rowbottom KT In: Ullmannʼs Encyclopedia of Industrial Chemistry Wiley-VCH Weinheim, Germany 1999;
- 12 Zakkour P, Cook G. CCS Roadmap for Industry: High-purity CO2 sources: Sectoral Assessment - Final Draft Report 2010; https://hub.globalccsinstitute.com/publications/ccs-roadmap-industry-high-purity-co2-sources-sectoral-assessment—final-draft-report-2
- 16 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT 2009
- 25 Dhuri SN, Cho K.-B, Lee Y.-M, Shin SY, Kim JH, Mandal D, Shaik S, Nam W. J. Am. Chem. Soc. 2015; 137: 8623
- 26 Sala X, Poater A, Romero I, Rodríguez M, Llobet A, Solans X, Parella T, Santos TM. Eur. J. Inorg. Chem. 2004; 612
- 29 Kee JW, Ng YY, Kulkarni SA, Muduli SK, Xu K, Ganguly R, Lu Y, Hirao H, Soo HS. Inorg. Chem. Front. 2016; 3: 651
- 33 Cytochrome P-450: Structure, Mechanism and Biochemistry. Ortiz de Montellano PR. Kluwer Academic/Plenum; New York 2005
- 37 Hirai Y, Kojima T, Mizutani Y, Shiota Y, Yoshizawa K, Fukuzumi S. Angew. Chem. Int. Ed. 2008; 47: 5772
- 40 Roeser R, Farràs P, Bozoglian F, Martínez-Belmonte M, Benet-Buchholz J, Llobet A. ChemSusChem 2011; 4: 197
- 42 Berardi S, Francàs L, Neudeck S, Maji S, Benet-Buchholz J, Meyer F, Llobet A. ChemSusChem 2015; 8: 3688
- 47 Kohl SW, Weiner L, Schwartsburd L, Konstantinovski L, Shimon LJW, Ben-David Y, Iron MA, Milstein D. Science (Washington, D. C.) 2009; 324: 74