Muñiz, K.: 2018 Science of Synthesis, 2017/4: Catalytic Oxidation in Organic Synthesis DOI: 10.1055/sos-SD-225-00040
Catalytic Oxidation in Organic Synthesis

2.3 Water as an Oxygen Source for Oxidation Reactions

More Information

Book

Editor: Muñiz, K.

Authors: Andries-Ulmer, A.; Bellina, F.; Berkessel, A.; Borrell, M.; Caballero, A.; Calleja, P.; Chemler, S. R.; Chen, P.; Costas, M.; Díaz-Requejo, M. M.; Dorel, R.; Dornan, L. M.; Ebner, D. C.; Echavarren, A. M.; Engler, H.; Esguerra, K. V. N.; Farràs, P.; Funes-Ardoiz, I.; Garrido-Barros, P.; Gimbert-Suriñach, C.; Gómez-Arrayas, R.; Griesbeck, A. G.; Gulder, T.; Hughes, N. L.; Ikariya, T.; Ishihara, K.; Jiao, N.; Kayaki, Y.; Kleczka, M.; Leuther, T. M.; Li, Z.; Liu, G.; Llobet, A.; Lumb, J.-P.; Martínez, C.; Maseras, F.; Muldoon, M. J.; Muñiz, K.; Park, N.; Patel, H. H.; Perego, L. A.; Pérez, P. J.; Race, N. J.; Rodríguez, N.; Sigman, M. S.; Sillner, S.; Singh, F. V.; Stoltz, B. M.; Uyanik, M.; Vicens, L.; Wdowik, T.; Wirth, T.; Wright, A. C.

Title: Catalytic Oxidation in Organic Synthesis

Print ISBN: 9783132012318; Online ISBN: 9783132403710; Book DOI: 10.1055/b-003-129345

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Koch, G.; Molander, G. A.; Schaumann, E.; Shibasaki, M.; Thomas, E. J.; Trost, B. M.

Type: Multivolume Edition

 


Abstract

The use of water as oxygen source for the catalytic oxidation of organic substrates is a clean alternative to the commonly used methods that utilize oxidizing agents based on contaminant metals such as chromium or manganese. In this chapter, a detailed description of the thermodynamic requirements of this type of reaction is given, with particular emphasis on the so-called organic-substrate-assisted water splitting (OSA-WS) reaction that generates hydrogen gas as the only byproduct of the reaction. Important considerations regarding the metal catalyst needed to perform these reactions are discussed, followed by specific examples described in the literature. Among them, are examples of epoxidation of alkenes, oxidation of sulfides to sulfoxides, and oxidation of alcohols to the corresponding carboxylic acids. In some cases, the energy input to perform the reaction comes from visible light by using photosensitizers or semiconductors as light-harvesting agents. Finally, two examples of photoelectrochemical cells (PECs) are described, where light-induced oxidation and reduction half reactions take place in separate compartments. This design provides an easy-to-process reaction where the oxidized organic compound and hydrogen gas byproduct are generated in independent compartments, and at the same time avoids undesired side reactions that may occur as a result of the mixture.

 
  • 1 Greenwood NN, Earnshaw A. Chemistry of the Elements. Elsevier Butterworth-Heinemann; Amsterdam 1997
  • 2 Kalita D, Radaram B, Brooks B, Kannam PP, Zhao X. ChemCatChem 2011; 3: 571
  • 3 Hajimohammadi M, Safari N, Mofakham H, Deyhimi F. Green Chem. 2011; 13: 991
  • 4 The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs. National Academies; Washington, DC 2004
  • 5 Energy Efficiency and Renewable Energy Through Nanotechnology. Zang L. Springer; Berlin 2011
  • 6 Fujishima A, Honda K. Nature (London) 1972; 238: 37
  • 7 Rigsby ML, Mandal L, Spencer LC, Nam W, Llobet A, Stahl SS. Chem. Sci. 2012; 3: 3058
  • 8 Grigoropoulou G, Clark JH, Elings JA. Green Chem. 2003; 5: 1
  • 9 Bauer K, Garbe D, Surburg H. Common Fragrance and Flavor Materials. Wiley-VCH; Weinheim, Germany 1997
  • 10 Sienel G, Rieth R, Rowbottom KT In: Ullmannʼs Encyclopedia of Industrial Chemistry Wiley-VCH Weinheim, Germany 1999; 10.1002/14356007.a09_531
  • 11 Kureshy RI, Khan N.-uH, Abdi SHR, Patel ST, Jasra RV. Tetrahedron: Asymmetry 2001; 12: 433
  • 13 Lee SC, Holm RH. Inorg. Chim. Acta 2008; 361: 1166
  • 14 Holm RH, Donahue JP. Polyhedron 1993; 12: 571
  • 15 Montgomery Jr JA, Frisch MJ, Ochterski JW, Petersson GA. J. Chem. Phys. 1999; 110: 2822
  • 16 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT 2009
  • 17 Zou X, Zhang Y. Chem. Soc. Rev. 2015; 44: 5148
  • 18 McKone JR, Marinescu SC, Brunschwig BS, Winkler JR, Gray HB. Chem. Sci. 2014; 5: 865
  • 19 Thoi VS, Sun Y, Long JR, Chang CJ. Chem. Soc. Rev. 2013; 42: 2388
  • 20 Llobet A. Inorg. Chim. Acta 1994; 221: 125
  • 21 Sobkowiak A, Qiu A, Liu X, Llobet A, Sawyer DT. J. Am. Chem. Soc. 1993; 115: 609
  • 22 Hage JP, Llobet A, Sawyer DT. Bioorg. Med. Chem. 1995; 3: 1383
  • 23 Meyer TJ, Huynh MHV. Inorg. Chem. 2003; 42: 8140
  • 24 Huynh MHV, Meyer TJ. Chem. Rev. 2007; 107: 5004
  • 25 Dhuri SN, Cho K.-B, Lee Y.-M, Shin SY, Kim JH, Mandal D, Shaik S, Nam W. J. Am. Chem. Soc. 2015; 137: 8623
  • 26 Sala X, Poater A, Romero I, Rodríguez M, Llobet A, Solans X, Parella T, Santos TM. Eur. J. Inorg. Chem. 2004; 612
  • 27 Zhou M, Robertson GP, Roovers J. Inorg. Chem. 2005; 44: 8317
  • 28 Kapturkiewicz A. Anal. Bioanal. Chem. 2016; 408: 7013
  • 29 Kee JW, Ng YY, Kulkarni SA, Muduli SK, Xu K, Ganguly R, Lu Y, Hirao H, Soo HS. Inorg. Chem. Front. 2016; 3: 651
  • 30 Hisatomi T, Kubota J, Domen K. Chem. Soc. Rev. 2014; 43: 7520
  • 31 Chen X, Shen S, Guo L, Mao SS. Chem. Rev. 2010; 110: 6503
  • 32 Kudo A, Miseki Y. Chem. Soc. Rev. 2009; 38: 253
  • 33 Cytochrome P-450: Structure, Mechanism and Biochemistry. Ortiz de Montellano PR. Kluwer Academic/Plenum; New York 2005
  • 34 Fukuzumi S, Kishi T, Kotani H, Lee Y.-M, Nam W. Nat. Chem. 2011; 3: 38
  • 35 Zhang R, Horner JH, Newcomb M. J. Am. Chem. Soc. 2005; 127: 6573
  • 36 Fukuzumi S, Fujioka N, Kotani H, Ohkubo K, Lee Y.-M, Nam W. J. Am. Chem. Soc. 2009; 131: 17127
  • 37 Hirai Y, Kojima T, Mizutani Y, Shiota Y, Yoshizawa K, Fukuzumi S. Angew. Chem. Int. Ed. 2008; 47: 5772
  • 38 Zhou X, Li F, Li H, Wang Y, Sun L. Dalton Trans. 2015; 44: 475
  • 39 Chen W, Rein FN, Rocha RC. Angew. Chem. Int. Ed. 2009; 48: 9672
  • 40 Roeser R, Farràs P, Bozoglian F, Martínez-Belmonte M, Benet-Buchholz J, Llobet A. ChemSusChem 2011; 4: 197
  • 41 Farràs P, Maji S, Benet-Buchholz J, Llobet A. Chem.–Eur. J. 2013; 19: 7162
  • 42 Berardi S, Francàs L, Neudeck S, Maji S, Benet-Buchholz J, Meyer F, Llobet A. ChemSusChem 2015; 8: 3688
  • 43 Balaraman E, Khaskin E, Leitus G, Milstein D. Nat. Chem. 2013; 5: 122
  • 44 Zweifel T, Naubron J.-V, Grützmacher H. Angew. Chem. Int. Ed. 2009; 48: 559
  • 45 Annen S, Zweifel T, Ricatto F, Grützmacher H. ChemCatChem 2010; 2: 1286
  • 46 Gunanathan C, Milstein D. Acc. Chem. Res. 2011; 44: 588
  • 47 Kohl SW, Weiner L, Schwartsburd L, Konstantinovski L, Shimon LJW, Ben-David Y, Iron MA, Milstein D. Science (Washington, D. C.) 2009; 324: 74
  • 48 Antoniadou M, Lianos P. Catal. Today 2009; 144: 166
  • 49 Escobedo JF, Gomes EN, Oliveira AP, Soares J. Appl. Energy 2009; 86: 299
  • 50 Farràs P, Di Giovanni C, Clifford JN, Palomares E, Llobet A. Coord. Chem. Rev. 2015; 304: 202
  • 51 Farràs P, Di Giovanni C, Clifford JN, Garrido-Barros P, Palomares E, Llobet A. Green Chem. 2016; 18: 255
  • 52 Bai L, Li F, Wang Y, Li H, Jiang X, Sun L. Chem. Commun. (Cambridge) 2016; 52: 9711