9 Catalytic Aerobic Oxidation of Phenols
Book
Editor: Muñiz, K.
Title: Catalytic Oxidation in Organic Synthesis
Print ISBN: 9783132012318; Online ISBN: 9783132403710; Book DOI: 10.1055/b-003-129345
1st edition © 2018. Thieme. All rights reserved.
Georg Thieme Verlag KG, Stuttgart
Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry
Science of Synthesis Reference Libraries
Parent publication
Title: Science of Synthesis
DOI: 10.1055/b-00000101
Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Koch, G.; Molander, G. A.; Schaumann, E.; Shibasaki, M.; Thomas, E. J.; Trost, B. M.
Type: Multivolume Edition
Abstract
Phenols are ubiquitous motifs in nature and their aerobic oxidation is implicated in the biosynthesis of a wide variety of biologically relevant compounds and polymeric materials. This chapter outlines notable catalytic aerobic oxidations of phenols, and includes recent advances in oxidative dimerizations, polymerizations and oxygenation reactions as well as key advances in copper-mediated phenol functionalization. Specifically, this chapter focuses on the synthesis of poly(1,4-phenylene oxides), biphenols, quinones, Pummerer’s ketones, and oxepinobenzofurans.
Key words
phenols - tyrosinase - benzofurans - poly(1,4-phenylene oxides) - biphenols - ortho-quinones - para-quinones - Pummerer’s ketone - oxepinobenzofurans - ortho-aminophenols - copper - aerobic- 8 Jackson SK, Wu K.-L, Pettus TRR, In: Biomimetic Organic Synthesis Poupon E, Nay B. Wiley-VCH Weinheim, Germany 2011; 723-749
- 14 Bharara MS, Atwood DA In: Encyclopedia of Inorganic Chemistry Wiley Chichester, UK 2006; 6. 4054-4100
- 15 Hess CR, Welford RWD, Klinman JP, In: Wiley Encyclopedia of Chemical Biology Begley TP. Wiley Hoboken, NJ 2009; 3. 529-540
- 17 Gamenara D, Seoane GA, Saenz-Méndez P, de María PD. Redox Biocatalysis: Fundamentals and Applications. Wiley; Hoboken, NJ 2012: 303-432
- 21 Guo Q.-X, Wu Z.-J, Luo Z.-B, Liu Q.-Z, Ye J.-L, Luo S.-W, Cun L.-F, Gong L.-Z. J. Am. Chem. Soc. 2007; 129: 13927
- 25 Weinberg DR, Gagliardi CJ, Hull JF, Murphy CF, Kent CA, Westlake BC, Paul A, Ess DH, McCafferty DG, Meyer TJ. Chem. Rev. 2012; 112: 4016
- 40 Higashimura H, Fujisawa K, Kubota M, Kobayashi S. J. Polym. Sci., Part A: Polym. Chem. 2005; 43: 1955
- 45 Hassall CH, Scott AI, In: Recent Developments in the Chemistry of Natural Phenolic Compounds Ollis WD. Pergamon New York 1961; 119-133
- 66 Grant-Overton S, Buss JA, Smith EH, Gutierrez EG, Moorhead EJ, Lin VS, Wenzel AG. Synth. Commun. 2015; 45: 331
- 69 Bringmann G, Price Mortimer AJ, Keller PA, Gresser MJ, Garner J, Breuning M. Angew. Chem. Int. Ed. 2005; 44: 5384
- 77 Miller LL, Stewart RF, Gillespie JP, Ramachandran V, So YH, Stermitz FR. J. Org. Chem. 1978; 43: 1580
- 79 Jin Z, Xu X.-H, In: Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes Ramawat GK, Mérillon J.-M. Springer Berlin 2013; 479-522
- 80 Marco-Contelles J, do Carmo Carreiras M, Rodríguez C, Villarroya M, García AG. Chem. Rev. 2006; 106: 116
- 91 Haack P, Kärgel A, Greco C, Dokic J, Braun B, Pfaff FF, Mebs S, Ray K, Limberg C. J. Am. Chem. Soc. 2013; 135: 16148
- 101 Talsi EP, Shaikhutdinova NI, Shubin AA, Chinakov VD, Khlebnikov BM, Yudkin BI, Nekipelov VM, Zamaraev KI. J. Mol. Catal. 1990; 57: 325
- 103 Higashimura H, Kobayashi S In: Encyclopedia of Polymer Science and Technology Wiley Hoboken, NJ 2014; 9. 432-456
- 105 Wan L.-M, Li H.-X, Zhao W, Ding H.-Y, Fang Y.-Y, Ni P.-H, Lang J.-P. J. Polym. Sci., Part A: Polym. Chem. 2012; 50: 4864
- 119 Kita Y, Tohma H, Hatanaka K, Takada T, Fujita S, Mitoh S, Sakurai H, Oka S. J. Am. Chem. Soc. 1994; 116: 3684
- 134 Nishinaga A, Tomita H, Nishizawa K, Matsuura T, Ooi S, Hirotsu K. J. Chem. Soc., Dalton Trans. 1981; 1504
- 135 Frostin-Rio M, Pujol D, Bied-Charreton C, Perrée-Fauvet M, Gaudemer A. J. Chem. Soc., Perkin Trans. 1 1984; 1971
- 153 Yoshikawa T, Yagi T, Shinohara S, Fukunaga T, Nakasaka Y, Tago T, Masuda T. Fuel Process. Technol. 2013; 108: 69
- 172 Kimachi T, Sugita K.-i, Tamura Y, Kagawa M, Yamasaki K, Yoneda F, Sasaki T. Bioorg. Med. Chem. Lett. 1997; 7: 753
- 176 Barton DHR, Brewster AG, Ley SV, Read CM, Rosenfeld MN. J. Chem. Soc., Perkin Trans. 1 1981; 1473
- 183 Weaver MG, Pettus TRR, In: Comprehensive Organic Synthesis II Knochel P, Molander GA. Elsevier Amsterdam 2014; 373-410
- 186 Chioccara F, Chiodini G, Farina F, Orlandi M, Rindone B, Sebastiano R. J. Mol. Catal. A: Chem. 1995; 97: 187
- 187 Vanneste WH, Zuberbühler A, In: Molecular Mechanisms of Oxygen Activation Hayaishi O. Academic New York 1974; 371-404
- 189 Rolle CJ, Saracini C, Karlin KD In: Encyclopedia of Inorganic and Bioinorganic Chemistry Wiley Hoboken, NJ
- 193 Yee GM, Tolman WB, In: Sustaining Life on Planet Earth: Metalloenzymes Mastering Dioxygen and Other Chewy Gases Kroneck PMH, Sosa Torres ME. Springer Cham, Switzerland 2015; 15. 131-204
- 197 Halfen JA, Mahapatra S, Wilkinson EC, Kaderli S, Young Jr VG, Que Jr L, Zuberbühler AD, Tolman WB. Science (Washington, D. C.) 1996; 271: 1397
- 199 Kodera M, Kajita Y, Tachi Y, Katayama K, Kano K, Hirota S, Fujinami S, Suzuki M. Angew. Chem. Int. Ed. 2004; 43: 334
- 200 Mirica LM, Vance M, Rudd DJ, Hedman B, Hodgson KO, Solomon EI, Stack TDP. Science (Washington, D. C.) 2005; 308: 1890
- 201 Opʼt Holt BT, Vance MA, Mirica LM, Heppner DE, Stack TDP, Solomon EI. J. Am. Chem. Soc. 2009; 131: 6421
- 203 Ottenwaelder X, Rudd DJ, Corbett MC, Hodgson KO, Hedman B, Stack TDP. J. Am. Chem. Soc. 2006; 128: 9268
- 207 Hoffmann A, Citek C, Binder S, Goos A, Rübhausen M, Troeppner O, Ivanović-Burmazović I, Wasinger EC, Stack TDP, Herres-Pawlis S. Angew. Chem. Int. Ed. 2013; 52: 5398