2.7 Reduction of Nitro Compounds to Amines, Azo Compounds, Hydroxylamines, and Oximes, and Reduction of N -Oxides to Amines
Book
Editor: de Vries, J. G.
Title: Catalytic Reduction in Organic Synthesis 2
Print ISBN: 9783132406261; Online ISBN: 9783132406308; Book DOI: 10.1055/b-005-145235
1st edition © 2018. Thieme. All rights reserved.
Georg Thieme Verlag KG, Stuttgart
Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry
Science of Synthesis Reference Libraries
Parent publication
Title: Science of Synthesis
DOI: 10.1055/b-00000101
Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Koch, G.; Molander, G. A.; Shibasaki, M.; Thomas, E. J.; Trost, B. M.
Type: Multivolume Edition
Abstract
Various catalytic strategies are discussed for the reduction of both aromatic and aliphatic nitro functionalities to the corresponding amines, including homogeneous and heterogeneous (transfer) hydrogenations, as well as the water–gas shift reaction. Chemoselectivity with respect to other reducible moieties (carbonyls, alkenes, alkynes) and hydrodehalogenation is taken into account. The isolation of azobenzenes, N-substituted hydroxylamines, and oximes, which are typically considered intermediates or byproducts in nitro reductions, is included as well. Finally, developments in the deoxygenation of N-oxides are addressed briefly.
Key words
nitroaromatics - nitroaliphatics - reduction - deoxygenation - N-oxides - hydrogenation - transfer hydrogenation - water–gas shift reaction - anilines - amines - azobenzenes - N-substituted hydroxylamines - oximes - pyridines - chemoselectivity - scale-up - homogeneous catalysis - heterogeneous catalysis- 2 Dixon DJ, Pando Morejón O, In: Comprehensive Organic Synthesis Knochel P, Molander GA. Elsevier Amsterdam 2014; 8. 479
- 13 Lakshmi Kantam M, Chakravarti R, Pal U, Sreedhar B, Bhargavab S. Adv. Synth. Catal. 2008; 350: 822
- 19 Deprez-Poulain R, Willand N, Boutillon C, Nowogrocki G, Azaroual N, Deprez B. Tetrahedron Lett. 2004; 45: 5287
- 28 Damodara D, Arundhathi R, Ramesh Babu TV, Legan MK, Kumpaty HJ, Likhar PR. RSC Adv. 2014; 4: 22567
- 32 Rai RK, Mahata A, Mukhopadhyay S, Gupta S, Li P.-Z, Nguyen KT, Zhao Y, Pathak B, Singh SK. Inorg. Chem. 2014; 53: 2904
- 40 Cartolano AR, Vedage GA In: Kirk-Othmer Encyclopedia of Chemical Technology Wiley New York 2004; 2. 476
- 49 Loos P, Alex H, Hassfeld J, Lovis K, Platzek J, Steinfeldt N, Hübner S. Org. Process Res. Dev. 2016; 20: 452
- 53 Jagadeesh RV, Surkus A.-E, Junge H, Pohl M.-M, Radnik J, Rabeah J, Huan H, Schünemann V, Brückner A, Beller M. Science (Washington, D. C.) 2013; 342: 1073
- 55 Wienhöfer G, Baseda-Krüger M, Ziebart C, Westerhaus FA, Baumann W, Jackstell R, Junge K, Beller M. Chem. Commun. (Cambridge) 2013; 49: 9089
- 57 Ziebart C, Federsel C, Anbarasan P, Jackstell R, Baumann W, Spannenberg A, Beller M. J. Am. Chem. Soc. 2012; 134: 20701
- 69 Gawande MB, Rathi AK, Branco PS, Nogueira ID, Velhinho A, Shrikhande JJ, Indulkar UU, Jayaram RV, Ghumman CAA, Bundaleski N, Teodoro OMND. Chem.–Eur. J. 2012; 18: 12628
- 70 Wienhöfer G, Sorribes I, Boddien A, Westerhaus F, Junge K, Junge H, Llusar R, Beller M. J. Am. Chem. Soc. 2011; 133: 12875
- 100 Liu P.-L, Zhang H.-K, Liu S.-H, Yao Z.-J, Hao F, Liao H.-G, You K.-Y, Luo H.-A. ChemCatChem 2013; 5: 2932
- 108 García N, García-García P, Fernández-Rodríguez MA, García D, Pedrosa MR, Arnáiz FJ, Sanz R. Green Chem. 2013; 15: 999
- 109 García N, García-García P, Fernández-Rodríguez MA, Rubio R, Pedrosa MR, Arnáiz FJ, Sanz R. Adv. Synth. Catal. 2012; 354: 321