Jamison, T. F. et al.: 2018 Science of Synthesis, 2018/5: Flow Chemistry in Organic Synthesis DOI: 10.1055/sos-SD-228-00166
Flow Chemistry in Organic Synthesis

7 Very Fast Reactions and Extreme Conditions

More Information

Book

Editors: Jamison, T. F.; Koch, G.

Authors: Beeler, A. B.; Beingessner, R. L.; Bottecchia, C.; Browne, D. L.; Coley, C. W.; Ferguson, S.; Folgueiras-Amador, A. A.; Gilmore, K.; Hicklin, R. W.; Imbrogno, J.; Itsuno, S.; Jamison, T. F.; Jensen, K. F.; Kelly, L. P.; Kerr, M. S.; Kiesman, W. F.; Kim, H.; Kwok, D.-I. A.; Ley, S. V.; Longstreet, A. R.; May, S. A.; McTeague, T. A.; Mijalis, A. J.; Mo, Y.; Moon, S.; Myerson, A.; Noël, T.; O’Brien, A. G.; O’Brien, M.; O’Mahony, M.; Opalka, S. M.; Pentelute, B. L.; Polyzos, A.; Schepartz, A.; Seeberger, P. H.; Seo, H.; Steinauer, A.; Stelzer, T.; Stephenson, C. R. J.; Strom, A. E.; Styduhar, E. D.; Sun, A. C.; Telmesani, R.; Thomas, D. A.; Tran, T. H.; Ullah, M. S.; Wicker, A. C.; Wirth, T.; Yoshida, J.

Title: Flow Chemistry in Organic Synthesis

Print ISBN: 9783132423312; Online ISBN: 9783132423350; Book DOI: 10.1055/b-006-161272

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

Microreaction technology represents a powerful and unique tool for the control of extremely fast reactions and reactions under extreme conditions. In this chapter, fast flow reactions such as Swern–Moffatt oxidations, diisobutylaluminum hydride reductions, reactions involving organolithiums and organomagnesiums, and Friedel–Crafts alkylations are presented. Moreover, this chapter also covers examples of reactions performed under extreme reaction conditions of high temperature and high pressure, which cannot be easily conducted in flasks.

 
  • 1 Yoshida J. Flash Chemistry: Fast Organic Synthesis in Microsystems. Wiley; Chichester, UK 2008
  • 2 Yoshida J, Nagaki A, Yamada T. Chem.–Eur. J. 2008; 14: 7450
  • 3 Kawaguchi T, Miyata H, Ataka K, Mae K, Yoshida J. Angew. Chem. Int. Ed. 2005; 44: 2413
  • 4 Omura K, Sharma AK, Swern D. J. Org. Chem. 1976; 41: 957
  • 5 Nieuwland PJ, Koch K, van Harskamp N, Wehrens R, van Hest JCM, Rutjes FPJT. Chem.–Asian J. 2010; 5: 799
  • 6 Ducry L, Roberge DM. Org. Process Res. Dev. 2008; 12: 163
  • 7 Webb D, Jamison TF. Org. Lett. 2012; 14: 568
  • 8 Webb D, Jamison TF. Org. Lett. 2012; 14: 2465
  • 9 Usutani H, Tomida Y, Nagaki A, Okamoto H, Nokami T, Yoshida J. J. Am. Chem. Soc. 2007; 129: 3046
  • 10 Nagaki A, Tomida Y, Usutani H, Kim H, Takabayashi N, Nokami T, Okamoto H, Yoshida J. Chem.–Asian J. 2007; 2: 1513
  • 11 Nagaki A, Ichinari D, Yoshida J. J. Am. Chem. Soc. 2014; 136: 12245
  • 12 Nagaki A, Kim H, Yoshida J. Angew. Chem. Int. Ed. 2008; 47: 7833
  • 13 Nagaki A, Kim H, Moriwaki Y, Matsuo C, Yoshida J. Chem.–Eur. J. 2010; 16: 11167
  • 14 Nagaki A, Kim H, Usutani H, Matsuo C, Yoshida J. Org. Biomol. Chem. 2010; 8: 1212
  • 15 Nagaki A, Kim H, Yoshida J. Angew. Chem. Int. Ed. 2009; 48: 8063
  • 16 Kim H, Lee H.-J, Kim D.-P. Angew. Chem. Int. Ed. 2015; 54: 1877
  • 17 Kim H, Nagaki A, Yoshida J. Nat. Commun. 2011; 2: 264
  • 18 Nagaki A, Uesugi Y, Kim H, Yoshida J. Chem.–Asian J. 2013; 8: 705
  • 19 Nagaki A, Ichinari D, Yoshida J. Chem. Commun. (Cambridge) 2013; 49: 3242
  • 20 Degennaro L, Maggiulli D, Carlucci C, Fanelli F, Romanazzi G, Luisi R. Chem. Commun. (Cambridge) 2016; 52: 9554
  • 21 Nagaki A, Takahashi Y, Yoshida J. Chem.–Eur. J. 2014; 20: 7931
  • 22 Knochel P, Dohle W, Gommermann N, Kneisel FF, Kopp F, Korn T, Sapountzis I, Vu VA. Angew. Chem. Int. Ed. 2003; 42: 4302
  • 23 Brodmann T, Koos P, Metzger A, Knochel P, Ley SV. Org. Process Res. Dev. 2012; 16: 1102
  • 24 Tricotet T, OʼShea DF. Chem.–Eur. J. 2010; 16: 6678
  • 25 Suga S, Nagaki A, Yoshida J. Chem. Commun. (Cambridge) 2003; 354
  • 26 Nagaki A, Togai M, Suga S, Aoki N, Mae K, Yoshida J. J. Am. Chem. Soc. 2005; 127: 11666
  • 27 Bogdan AR, Poe SL, Kubis DC, Broadwater SJ, McQuade DT. Angew. Chem. Int. Ed. 2009; 48: 8547
  • 28 Snead DR, Jamison TF. Angew. Chem. Int. Ed. 2015; 54: 983
  • 29 Hessel V, Hofmann C, Löb P, Löhndorf J, Löwe H, Ziogas A. Org. Process Res. Dev. 2005; 9: 479
  • 30 Tanaka K, Motomatsu S, Koyama K, Tanaka S, Fukase K. Org. Lett. 2007; 9: 299
  • 31 Hamper BC, Tesfu E. Synlett 2007; 2257
  • 32 Murphy ER, Martinelli JR, Zaborenko N, Buchwald SL, Jensen KF. Angew. Chem. Int. Ed. 2007; 46: 1734
  • 33 Baumann M, Baxendale IR, Ley SV, Nikbin N, Smith CD, Tierney JP. Org. Biomol. Chem. 2008; 6: 1577
  • 34 Bogdan AR, Wang Y. RSC Adv. 2015; 5: 79264
  • 35 Charaschanya M, Bogdan AR, Wang Y, Djuric SW. Tetrahedron Lett. 2016; 57: 1035
  • 36 Bogdan AR, Charaschanya M, Dombrowski AW, Wang Y, Djuric SW. Org. Lett. 2016; 18: 1732