15.3 Flow Chemistry in the Pharmaceutical Industry: Part 3
Book
Editors: Jamison, T. F.; Koch, G.
Title: Flow Chemistry in Organic Synthesis
Print ISBN: 9783132423312; Online ISBN: 9783132423350; Book DOI: 10.1055/b-006-161272
1st edition © 2018. Thieme. All rights reserved.
Georg Thieme Verlag KG, Stuttgart
Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry
Science of Synthesis Reference Libraries
Parent publication
Title: Science of Synthesis
DOI: 10.1055/b-00000101
Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.
Type: Multivolume Edition
Abstract
When considering whether to develop a flow-chemistry approach to a particular synthetic route, the criteria of safety, quality, cost, sustainability, scalability, and speed are all considered. This chapter presents a case study of a single reaction, the formylation of an aryl bromide, being performed in a batch reactor, a microreactor, a plug-flow reactor, and a spinning-disk reactor. An assessment of the various technologies is made with respect to the abovementioned criteria.
Key words
flow chemistry - scale-up - batch reactions - microreactors - plug-flow reactors - spinning-disk reactors - process development - optimization- 6 Feng R, Ramchandani S, Ramalingam B, Tan SWB, Li C, Teoh SK, Boodhoo K, Sharratt P. Org. Process Res. Dev. 2017; 21: 1259
- 7 Kopach ME, Cole KP, Pollock PM, Johnson MD, Braden TM, Webster LP, McClary Groh J, McFarland AD, Schafer JP, Adler JJ, Rosemeyer M. Org. Process Res. Dev. 2016; 20: 1581
- 9 Throughout this chapter, the terms butyllithium and BuLi refer to the unbranched alkyllithium, n-butyllithium.
- 12 Usutani H, Tomida Y, Nagaki A, Okamoto H, Nokami T, Yoshida J.-i. J. Am. Chem. Soc. 2007; 129: 3046
- 13 Nagaki A, Tomida Y, Usutani H, Kim H, Takabayashi N, Nokami T, Okamoto H, Yoshida J.-i. Chem.–Asian J. 2007; 2: 1513
- 15 Mielke E, Plouffe P, Koushik N, Eyholzer M, Gottsponer M, Kockmann N, Macchi A, Roberge DM. React. Chem. Eng. 2017; 2: 763
- 25 Boodhoo K, In: Process Intensification for Green Chemistry: Engineering Solutions for Sustainable Chemical Processing Boodhoo K, Harvey A. Wiley Hoboken, NJ 2013; 59-90
- 28 Kern S, Meyer K, Guhl S, Gräßer P, Paul A, King R, Maiwald M. Anal. Bioanal. Chem. 2018; 410: 3349
- 32 Poechlauer P, Colberg J, Fisher E, Jansen M, Johnson MD, Koenig SG, Lawler M, Laporte T, Manley J, Martin B, OʼKearney-McMullan A. Org. Process Res. Dev. 2013; 17: 1472
- 36 May SA, Johnson MD, Braden TM, Calvin JR, Haeberle BD, Jines AR, Miller RD, Plocharczyk EF, Rener GA, Richey RN, Schmid CR, Vaid RK, Yu H. Org. Process Res. Dev. 2012; 16: 982
- 39 Hohmann L, Löbnitz L, Menke C, Santhirakumaran B, Stier P, Stenger F, Dufour F, Wiese G, zur Horst-Meyer S, Kusserow B, Zang W, Nirschl H, Kockmann N. Chem. Eng. Technol. 2018; 41: 1152
- 40 Cole KP, McClary Groh J, Johnson MD, Burcham CL, Campbell BM, Diseroad WD, Heller MR, Howell JR, Kallman NJ, Koenig TM, May SA, Miller RD, Mitchell D, Myers DP, Myers SS, Phillips JL, Polster CS, White TD, Cashman J, Hurley D, Moylan R, Sheehan P, Spencer RD, Desmond K, Desmond P, Gowran O. Science (Washington, D. C.) 2017; 356: 1144