Jamison, T. F. et al.: 2018 Science of Synthesis, 2018/5: Flow Chemistry in Organic Synthesis DOI: 10.1055/sos-SD-228-00279
Flow Chemistry in Organic Synthesis

13 The Controlled Synthesis of Carbohydrates

More Information

Book

Editors: Jamison, T. F.; Koch, G.

Authors: Beeler, A. B.; Beingessner, R. L.; Bottecchia, C.; Browne, D. L.; Coley, C. W.; Ferguson, S.; Folgueiras-Amador, A. A.; Gilmore, K.; Hicklin, R. W.; Imbrogno, J.; Itsuno, S.; Jamison, T. F.; Jensen, K. F.; Kelly, L. P.; Kerr, M. S.; Kiesman, W. F.; Kim, H.; Kwok, D.-I. A.; Ley, S. V.; Longstreet, A. R.; May, S. A. ; McTeague, T. A.; Mijalis, A. J.; Mo, Y.; Moon, S.; Myerson, A.; Noël, T.; O’Brien, A. G.; O’Brien, M.; O’Mahony, M.; Opalka, S. M.; Pentelute, B. L.; Polyzos, A. ; Schepartz, A.; Seeberger, P. H.; Seo, H.; Steinauer, A.; Stelzer, T.; Stephenson, C. R. J.; Strom, A. E.; Styduhar, E. D.; Sun, A. C.; Telmesani, R.; Thomas, D. A.; Tran, T. H.; Ullah, M. S.; Wicker, A. C.; Wirth, T.; Yoshida, J.

Title: Flow Chemistry in Organic Synthesis

Print ISBN: 9783132423312; Online ISBN: 9783132423350; Book DOI: 10.1055/b-006-161272

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner (Editor-in-Chief), A.; Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

While the formation of the glycosidic bond is the key transformation in the synthesis of polysaccharides, a dominant class of biopolymer, the reaction is poorly understood and remains highly challenging to perform reliably and selectively in a laboratory setting. This is due to the numerous intermediates and competing mechanistic pathways present, all of which are extremely sensitive to the environmental conditions of the reaction. This sensitivity and irreproducibility is an excellent opportunity to take advantage of the inherent control over reaction conditions achievable in micro- and meso-flow reactors. In this chapter, the range of transformations performed under continuous-flow conditions related to the synthesis of carbohydrates, including glycosidic bond formation, functional-group manipulations, and multistep synthesis, are presented and discussed. The advantages gained in flow are highlighted and, where available, directly compared to the respective batch process.

 
  • 1 Eichhorn SJ, Gandini A. MRS Bull 2010; 35: 187
  • 2 Heinze T, Siebert M, Berlin P, Koschella A. Macromol. Biosci 2016; 16: 10
  • 3 Plante OJ, Palmacci ER, Seeberger PH. Science (Washington, D. C.) 2001; 291: 1523
  • 4 Astronomo RD, Burton DR. Nat. Rev. Drug Discovery 2010; 9: 308
  • 5 Anish C, Schumann B, Pereira CL, Seeberger PH. Chem. Biol 2014; 21: 38
  • 6 Ruprecht C, Bartetzko MP, Senf D, Dallabernardina P, Boos I, Andersen MCF, Kotake T, Knox JP, Hahn MG, Clausen MH, Pfrengle F. Plant Physiol 2017; 175: 1094
  • 7 Lehmann J. Carbohydrates: Structure and Biology. Thieme; Stuttgart 1998
  • 8 Demchenko AV, De Meo C. Science of Synthesis Knowledge Updates 2010; 3: 229
  • 9 Nukada T, Berces A, Zgierski MZ, Whitfield DM. J. Am. Chem. Soc 1998; 120: 13291
  • 10 Ratner DM, Murphy ER, Jhunjhunwala M, Snyder DA, Jensen KF, Seeberger PH. Chem. Commun. (Cambridge) 2005; 578
  • 11 Park Y, Harper KC, Kuhl N, Kwan EE, Liu RY, Jacobsen EN. Science (Washington, D. C.) 2017; 355: 162
  • 12 Lemieux RU, Hendriks KB, Stick RV, James K. J. Am. Chem. Soc 1975; 97: 4056
  • 13 Crich D. J. Org. Chem 2011; 76: 9193
  • 14 Ratcliffe AJ, Fraser-Reid B. J. Chem. Soc., Perkin Trans. 1 1990; 747
  • 15 Baek JY, Lee B.-Y, Jo MG, Kim KS. J. Am. Chem. Soc 2009; 131: 17705
  • 16 Plutschack MB, Pieber B, Gilmore K, Seeberger PH. Chem. Rev 2017; 117: 11796
  • 17 Baxendale IR. J. Chem. Technol. Biotechnol 2013; 88: 519
  • 18 Yoshida J.-I. Chem. Rec 2010; 10: 332
  • 19 Cantillo D, Damm M, Dallinger D, Bauser M, Berger M, Kappe CO. Org. Process Res. Dev 2014; 18: 1360
  • 20 Cambié D, Bottecchia C, Straathof NJW, Hessel V, Noël T. Chem. Rev 2016; 116: 10276
  • 21 Yoshida J.-I. Chem. Commun. (Cambridge) 2005; 4509
  • 22 Pieber B, Gilmore K, Seeberger PH. J. Flow Chem 2017; 7: 129
  • 23 Yoshida J.-I, Takahashi Y, Nagaki A. Chem. Commun. (Cambridge) 2013; 49: 9896
  • 24 Tanaka K, Miyagawa T, Fukase K. Synlett 2009; 1571
  • 25 Tanaka K, Mori Y, Fukase K. J. Carbohydr. Chem 2009; 28: 1
  • 26 Hessel V, Löwe H, Schönfeld F. Chem. Eng. Sci 2005; 60: 2479
  • 27 Tanaka K, Fujii Y, Tokimoto H, Mori Y, Tanaka S.-I, Bao G.-M, Siwu ERO, Nakayabu A, Fukase K. Chem.–Asian J 2009; 4: 574
  • 28 Tanaka K, Fukase K. Beilstein J. Org. Chem 2009; 5: 40
  • 29 Tanaka K, Fukase K. Org. Process Res. Dev 2009; 13: 983
  • 30 Tanaka S.-I, Goi T, Tanaka K, Fukase K. J. Carbohydr. Chem 2007; 26: 369
  • 31 Uchinashi Y, Tanaka K, Manabe Y, Fujimoto Y, Fukase K. J. Carbohydr. Chem 2014; 33: 55
  • 32 Comprehensive Glycoscience: From Chemistry to Systems Biology. Kamerling JP, Boons G.-J, Lee YC, Suzuki A, Taniguchi N, Voragen AGJ. Elsevier; Amsterdam 2007
  • 33 Kahne D, Walker S, Cheng Y, Van Engen D. J. Am. Chem. Soc 1989; 111: 6881
  • 34 Garcia BA, Gin DY. J. Am. Chem. Soc 2000; 122: 4269
  • 35 Tanaka H, Iwata Y, Takahashi D, Adachi M, Takahashi T. J. Am. Chem. Soc 2005; 127: 1630
  • 36 Matthies S, McQuade DT, Seeberger PH. Org. Lett 2015; 17: 3670
  • 37 Gilmore K, Alabugin IV. Chem. Rev 2011; 111: 6513
  • 38 Sniady A, Bedore MW, Jamison TF. Angew. Chem. Int. Ed 2011; 50: 2155
  • 39 Cossar PJ, Hizartzidis L, Simone MI, McCluskey A, Gordon CP. Org. Biomol. Chem 2015; 13: 7119
  • 40 Irfan M, Glasnov TN, Kappe CO. ChemSusChem 2011; 4: 300
  • 41 Mallia CJ, Baxendale IR. Org. Process Res. Dev 2016; 20: 327
  • 42 Jones RV, Godorhazy L, Varga N, Szalay D, Urge L, Darvas F. J. Comb. Chem 2006; 8: 110
  • 43 Ekholm FS, Mándity IM, Fülöp F, Leino R. Tetrahedron Lett 2011; 52: 1839
  • 44 Miyagawa A, Tomita R, Kurimoto K, Yamamura H. Synth. Commun 2016; 46: 556
  • 45 Kawakami H, Goto K, Mizuno M. Chem. Lett 2009; 38: 906
  • 46 Webb D, Jamison TF. Chem. Sci 2010; 1: 675
  • 47 Cancogni D, Lay L. Synlett 2014; 25: 2873
  • 48 Naresh K, Schuhmacher F, Hahm HS, Seeberger PH. Chem. Commun. (Cambridge) 2017; 53: 9085
  • 49 Photo credit: Max Planck Society.
  • 50 Andrade RB, Plante OJ, Melean LG, Seeberger PH. Org. Lett 1999; 1: 1811
  • 51 Hewitt MC, Seeberger PH. Org. Lett 2001; 3: 3699
  • 52 Wilsdorf M, Schmidt D, Bartetzko MP, Dallabernardina P, Schuhmacher F, Seeberger PH, Pfrengle F. Chem. Commun. (Cambridge) 2016; 52: 10187
  • 53 Ganesh NV, Fujikawa K, Tan YH, Stine KJ, Demchenko AV. Org. Lett 2012; 14: 3036
  • 54 Pistorio SG, Nigudkar SS, Stine KJ, Demchenko AV. J. Org. Chem 2016; 81: 8796