König, B.: 2019 Science of Synthesis, 2018/6: Photocatalysis in Organic Synthesis DOI: 10.1055/sos-SD-229-00087
Photocatalysis in Organic Synthesis

4 Photocatalytic Oxidative C–C Bond Formation

More Information

Book

Editor: König, B.

Authors: Akita, M. ; Albero, J.; Amador, A. G. ; Ashley, M. A.; Brasholz, M. ; Corcé, V.; DiRocco, D. A.; Dix, S.; Ehrnsberger, P.; Fensterbank, L. ; Gaida, F.; García, H.; Ghosh, I. ; Gilmour, R.; Griesbeck, A. G. ; Gutiérrez Bonet, Á.; Hepburn, H. B. ; Hopkinson, M. N. ; Kelly, C. B.; Koike, T. ; Laha, R. ; Lang, S. B.; Leonori, D. ; Lévêque, C.; Li, P.; Lu, L.-Q. ; Matsui, J. K.; Melchiorre, P. ; Molander, G. A. ; Mudd, R. J.; Ollivier, C.; Pandey, G.; Phelan, J.; Reiser, O.; Rey, Y. P.; Rovis, T.; Ruffoni, A.; Scholz, S. O. ; Schultz, D. M.; Skubi, K. L. ; Speckmeier, E.; Thullen, S. M.; Vollmer, M.; Wang, L. ; Wang, M.; Wei, Y.; Xiao, W.-J. ; Yoon, T. P. ; Zeitler, K. ; Zhou, Q.-Q.

Title: Photocatalysis in Organic Synthesis

Print ISBN: 9783132417021; Online ISBN: 9783132417069; Book DOI: 10.1055/b-006-161273

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner (Editor-in-Chief), A.; Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 

Abstract

This chapter summarizes some important examples of carbon–carbon bond-forming reactions at the α-position of tertiary amines using photoredox catalysis. The photocatalytic single-electron oxidation of tertiary amines leads to the generation of an amine radical cation, from which two highly reactive and synthetically useful intermediates, iminium ions and α-aminoalkyl radicals, can be produced. Iminium ion intermediates, being electrophilic in nature, react with a range of carbon nucleophiles forming new carbon–carbon bonds. On the other hand, the α-aminoalkyl radical, an electron-rich radical, adds efficiently to electron-deficient unsaturated systems resulting in carbon–carbon bond-forming reactions. This chapter also highlights some examples of carbon–carbon bond-forming reaction by nucleophilic/radical addition to photocatalytically generated arene radical cations.

 
  • 1 Ravelli D, Protti S, Fagnoni M. Chem. Rev 2016; 116: 9850
  • 2 Chemical Photocatalysis. König B. de Gruyter; Berlin 2013
  • 3 Romero N. A, Nicewicz D. A. Chem. Rev 2016; 116: 10075
  • 4 Prier C. K, Rankic D. A, MacMillan D. W. C. Chem. Rev 2013; 113: 5322
  • 5 Narayanam J. M. R, Stephenson C. R. J. Chem. Soc. Rev 2011; 40: 102
  • 6 Beatty J. W, Stephenson C. R. J. Acc. Chem. Res 2015; 48: 1474
  • 7 Cho S. H, Kim J. Y, Kwak J, Chang S. Chem. Soc. Rev 2011; 40: 5068
  • 8 DeLaive P. J, Foreman T. K, Giannotti C, Whitten D. G. J. Am. Chem. Soc 1980; 102: 5627
  • 9 DeLaive P. J, Lee J. T, Sprintschnik H. W, Abruna H, Meyer T. J, Whitten D. G. J. Am. Chem. Soc 1977; 99: 7094
  • 10 Shi L, Xia W. Chem. Soc. Rev 2012; 41: 7687
  • 11 Xi Y, Yi H, Lei A. Org. Biomol. Chem 2013; 11: 2387
  • 12 Xie J, Zhu C. C(sp3)-H Bond Functionalization. Springer; Berlin 2016
  • 13 Hu J, Wang J, Nguyen T. H, Zheng N. Beilstein J. Org. Chem 2013; 9: 1977
  • 14 Pandey G. Synlett 1992; 546
  • 15 Pandey G. Mol. Supramol. Photochem 1997; 1: 245
  • 16 Pandey G. Top. Curr. Chem 1993; 168: 175
  • 17 Condie A. G, González-Gómez J. C, Stephenson C. R. J. J. Am. Chem. Soc 2010; 132: 1464
  • 18 Bartling H, Eisenhofer A, König B, Gschwind R. M. J. Am. Chem. Soc 2016; 138: 11860
  • 19 Zhao Y, Zhang C, Chin K. F, Pytela O, Wei G, Liu H, Bureš F, Jiang Z. RSC Adv 2014; 4: 30062
  • 20 Rueping M, Vila C, Koenigs R. M, Poscharny K, Fabry D. C. Chem. Commun. (Cambridge) 2011; 47: 2360
  • 21 Zhao G, Yang C, Guo L, Sun H, Chen C, Xia W. Chem. Commun. (Cambridge) 2012; 48: 2337
  • 22 Orgren L. R, Maverick E. E, Marvin C. C. J. Org. Chem 2015; 80: 12635
  • 23 Dai C, Meschini F, Narayanam J. M. R, Stephenson C. R. J. J. Org. Chem 2012; 77: 4425
  • 24 Zhong J.-J, Meng Q.-Y, Wang G.-X, Liu Q, Chen B, Feng K, Tung C.-H, Wu L.-Z. Chem.–Eur. J 2013; 19: 6443
  • 25 Wu C.-J, Zhong J.-J, Meng Q.-Y, Lei T, Gao X.-W, Tung C.-H, Wu L.-Z. Org. Lett 2015; 17: 884
  • 26 Rueping M, Zhu S, Koenigs R. M. Chem. Commun. (Cambridge) 2011; 47: 12709
  • 27 Pandey G, Kumaraswamy G, Reddy P. Y. Tetrahedron 1992; 48: 8295
  • 28 Hari D. P, König B. Org. Lett 2011; 13: 3852
  • 29 Pandey G, Rani K. S, Lakshmaiah G. Tetrahedron Lett 1992; 33: 5107
  • 30 Freeman D. B, Furst L, Condie A. G, Stephenson C. R. J. Org. Lett 2012; 14: 94
  • 31 Pandey G, Reddy G. D. Tetrahedron Lett 1992; 33: 6533
  • 32 Kohls P, Jadhav D, Pandey G, Reiser O. Org. Lett 2012; 14: 672
  • 33 Yuan X, Wu X, Dong S, Wu G, Ye J. Org. Biomol. Chem 2016; 14: 7447
  • 34 Miyake Y, Nakajima K, Nishibayashi Y. J. Am. Chem. Soc 2012; 134: 3338
  • 35 Zhu S, Das A, Bui L, Zhou H, Curran D. P, Rueping M. J. Am. Chem. Soc 2013; 135: 1823
  • 36 Noble A, MacMillan D. W. C. J. Am. Chem. Soc 2014; 136: 11602
  • 37 Ju X, Li D, Li W, Yu W, Bian F. Adv. Synth. Catal 2012; 354: 3561
  • 38 Xie J, Shi S, Zhang T, Mehrkens N, Rudolph M, Hashmi A. S. K. Angew. Chem. Int. Ed 2015; 54: 6046
  • 39 Zhang P, Xiao T, Xiong S, Dong X, Zhou L. Org. Lett 2014; 16: 3264
  • 40 Ding W, Lu L.-Q, Liu J, Liu D, Song H.-T, Xiao W.-J. J. Org. Chem 2016; 81: 7237
  • 41 McNally A, Prier C. K, MacMillan D. W. C. Science (Washington, D. C.) 2011; 334: 1114
  • 42 Singh A, Arora A, Weaver J. D. Org. Lett 2013; 15: 5390
  • 43 Prier C. K, MacMillan D. W. C. Chem. Sci 2014; 5: 4173
  • 44 Pandey G, Krishna A, Girija K, Karthikeyan M. Tetrahedron Lett 1993; 34: 6631
  • 45 Pandey G, Murugan A, Balakrishnan M. Chem. Commun. (Cambridge) 2002; 624
  • 46 McManus J. B, Nicewicz D. A. J. Am. Chem. Soc 2017; 139: 2880
  • 47 Pandey G, Tiwari S. K, Singh B, Vanka K, Jain S. Chem. Commun. (Cambridge) 2017; 53: 12337