König, B.: 2019 Science of Synthesis, 2018/6: Photocatalysis in Organic Synthesis DOI: 10.1055/sos-SD-229-00162
Photocatalysis in Organic Synthesis

9 Gold in Photocatalysis

More Information

Book

Editor: König, B.

Authors: Akita, M.; Albero, J.; Amador, A. G.; Ashley, M. A.; Brasholz, M.; Corcé, V.; DiRocco, D. A.; Dix, S.; Ehrnsberger, P.; Fensterbank, L.; Gaida, F.; García, H.; Ghosh, I.; Gilmour, R.; Griesbeck, A. G.; Gutiérrez Bonet, Á.; Hepburn, H. B.; Hopkinson, M. N.; Kelly, C. B.; Koike, T.; Laha, R.; Lang, S. B.; Leonori, D.; Lévêque, C.; Li, P.; Lu, L.-Q.; Matsui, J. K.; Melchiorre, P.; Metternich, J. B.; Molander, G. A.; Mudd, R. J.; Ollivier, C.; Pandey, G.; Phelan, J. P.; Reiser, O.; Rey, Y. P.; Rovis, T.; Ruffoni, A.; Scholz, S. O.; Schultz, D. M.; Skubi, K. L.; Speckmeier, E.; Thullen, S. M.; Vollmer, M.; Wang, L.; Wang, M.; Wei, Y.; Xiao, W.-J.; Yoon, T. P.; Zeitler, K.; Zhou, Q.-Q.

Title: Photocatalysis in Organic Synthesis

Print ISBN: 9783132417021; Online ISBN: 9783132417069; Book DOI: 10.1055/b-006-161273

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

Dual catalytic systems combining gold and photocatalysis are capable of facilitating redox-neutral coupling reactions that are otherwise seldom observed using gold catalysts alone. The challenging oxidation of gold(I) to gold(III) in these processes is achieved through two single-electron-transfer steps involving photogenerated organic radicals derived most commonly from arenediazonium salts. In addition to analogues of some classical cross-coupling processes that are tolerant of halogen functionalities, arylative 1,2-difunctionalization reactions of π-systems, combining the traditional π-Lewis acidity of gold catalysts with coupling, are accessible. These processes can be performed on alkene, allene, and alkyne substrates with the unique mechanistic features of dual gold/photoredox catalysis allowing for improved selectivity for cross coupling compared to that observed in alternative oxidative gold-catalyzed coupling methodologies.

 
  • 1 Hashmi ASK. Chem. Rev. 2007; 107: 3180
  • 2 Krause N, Winter C. Chem. Rev. 2011; 111: 1994
  • 3 Dorel R, Echavarren AM. Chem. Rev. 2015; 115: 9028
  • 4 Bratsch SG. J. Phys. Chem. Ref. Data 1989; 18: 1
  • 5 Lauterbach T, Livendahl M, Rosellón A, Espinet P, Echavarren AM. Org. Lett. 2010; 12: 3006
  • 6 Hopkinson MN, Gee AD, Gouverneur V. Chem.–Eur. J. 2011; 17: 8248
  • 7 Wegner HA, Auzias M. Angew. Chem. Int. Ed. 2011; 50: 8236
  • 8 Aprile C, Boronat M, Ferrer B, Corma A, García H. J. Am. Chem. Soc. 2006; 128: 8388
  • 9 Sahoo B, Hopkinson MN, Glorius F. J. Am. Chem. Soc. 2013; 135: 5505
  • 10 Hopkinson MN, Tlahuext-Aca A, Glorius F. Acc. Chem. Res. 2016; 49: 2261
  • 11 Zhang M, Zhu C, Ye L.-W. Synthesis 2017; 49: 1150
  • 12 Zhang Q, Zhang Z.-Q, Fu Y, Yu H.-Z. ACS Catal. 2016; 6: 798
  • 13 Hopkinson MN, Sahoo B, Glorius F. Adv. Synth. Catal. 2014; 356: 2794
  • 14 Huang L, Rudolph M, Rominger F, Hashmi ASK. Angew. Chem. Int. Ed. 2016; 55: 4808
  • 15 Dong B, Peng H, Motika SE, Shi X. Chem.–Eur. J. 2017; 23: 11093
  • 16 Majek M, Filace F, Jacobi von Wangelin A. Beilstein J. Org. Chem. 2014; 10: 981
  • 17 Shu X.-z, Zhang M, He Y, Frei H, Toste FD. J. Am. Chem. Soc. 2014; 136: 5844
  • 18 Um J, Yun H, Shin S. Org. Lett. 2016; 18: 484
  • 19 Tlahuext-Aca A, Hopkinson MN, Garza-Sanchez RA, Glorius F. Chem.–Eur. J. 2016; 22: 5909
  • 20 Alcaide B, Almendros P, Busto E, Luna A. Adv. Synth. Catal. 2016; 358: 1526
  • 21 Xia Z, Khaled O, Mouriès-Mansuy V, Ollivier C, Fensterbank L. J. Org. Chem. 2016; 81: 7182
  • 22 Qu C, Zhang S, Du H, Zhu C. Chem. Commun. (Cambridge) 2016; 52: 14400
  • 23 Bansode AH, Shaikh SR, Gonnade RG, Patil NT. Chem. Commun. (Cambridge) 2017; 53: 9081
  • 24 Patil DV, Yun H, Shin S. Adv. Synth. Catal. 2015; 357: 2622
  • 25 DeTar DF, Kosuge T. J. Am. Chem. Soc. 1958; 80: 6072
  • 26 Alcaide B, Almendros P, Aparicio B, Lázaro-Milla C, Luna A, Faza ON. Adv. Synth. Catal. 2017; 359: 2789
  • 27 Kim S, Rojas-Martin J, Toste FD. Chem. Sci. 2016; 7: 85
  • 28 Tlahuext-Aca A, Hopkinson MN, Sahoo B, Glorius F. Chem. Sci. 2016; 7: 89
  • 29 Boorman TC, Larrosa I. Chem. Soc. Rev. 2011; 40: 1910
  • 30 Studer A, Curran DP. Angew. Chem. Int. Ed. 2016; 55: 58
  • 31 Alcaide B, Almendros P, Busto E, Lázaro-Milla C. J. Org. Chem. 2017; 82: 2177
  • 32 Wang Z.-S, Tan T.-D, Wang C.-M, Yuan D.-Q, Zhang T, Zhu P, Zhu C, Zhou J.-M, Ye L.-W. Chem. Commun. (Cambridge) 2017; 53: 6848
  • 33 Cornilleau T, Hermange P, Fouquet E. Chem. Commun. (Cambridge) 2016; 52: 10040
  • 34 Gauchot V, Lee A.-L. Chem. Commun. (Cambridge) 2016; 52: 10163
  • 35 Witzel S, Xie J, Rudolph M, Hashmi ASK. Adv. Synth. Catal. 2017; 359: 1522
  • 36 Cai R, Lu M, Aguilera EY, Xi Y, Akhmedov NG, Petersen JL, Chen H, Shi X. Angew. Chem. Int. Ed. 2015; 54: 8772
  • 37 Gauchot V, Sutherland DR, Lee A.-L. Chem. Sci. 2017; 8: 2885
  • 38 Akram MO, Mali PS, Patil NT. Org. Lett. 2017; 19: 3075
  • 39 He Y, Wu H, Toste FD. Chem. Sci. 2015; 6: 1194
  • 40 Tlahuext-Aca A, Hopkinson MN, Daniliuc CG, Glorius F. Chem.–Eur. J. 2016; 22: 11587
  • 41 Huang L, Rominger F, Rudolph M, Hashmi ASK. Chem. Commun. (Cambridge) 2016; 52: 6435
  • 42 Asomoza-Solís EO, Rojas-Ocampo J, Toscano RA, Porcel S. Chem. Commun. (Cambridge) 2016; 52: 7295
  • 43 Li H, Shan C, Tung C.-H, Xu Z. Chem. Sci. 2017; 8: 2610