19 Heterogeneous Photocatalysis in Organic Synthesis
Book
Editor: König, B.
Title: Photocatalysis in Organic Synthesis
Print ISBN: 9783132417021; Online ISBN: 9783132417069; Book DOI: 10.1055/b-006-161273
1st edition © 2019. Thieme. All rights reserved.
Georg Thieme Verlag KG, Stuttgart
Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry
Science of Synthesis Reference Libraries
Parent publication
Title: Science of Synthesis
DOI: 10.1055/b-00000101
Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.
Type: Multivolume Edition
Abstract

In recent years, heterogeneous photocatalysis has emerged as a very appealing approach, not only for the degradation of pollutants, but also for the synthesis of chemicals. Although the main use of heterogeneous photocatalysis so far has been the mineralization and complete degradation of organic compounds, interest in the application of heterogeneous (photo)catalysts in organic synthesis is growing due to their potential application in the fabrication of renewable fuels as well as in the preparation of compounds and intermediates especially valuable to the chemical industry, such as pharmaceuticals or polymers. The synthesis of organic molecules assisted by heterogeneous photocatalysts has been dominated by the use of inorganic metal oxide semiconductors, especially titanium(IV) oxide; the use of other semiconductor materials, such as inorganic chalcogenides, carbon-based semiconductors, or metal–organic frameworks has been less explored. In this chapter we show that, in spite of the potential and the large number of heterogeneous photocatalysts already studied, the state of the art of heterogeneous photocatalysis in organic synthesis is still unsatisfactory and much below expectation, particularly in reactions other than oxidation and reduction, such as cross couplings, oxidative decarboxylations, and cycloadditions.
Key words
photocatalysis - heterogeneous catalysis - semiconductors - metal oxides - titanium(IV) oxide - charge separation - metal–organic frameworks (MOF) - graphene - oxidation - reduction - cross coupling - cycloaddition-
2 Nosaka Y, Nosaka AY, In: Photocatalysis and Water Purification: From Fundamentals to Recent Applications Pichat P. Wiley-VCH Weinheim, Germany 2013; 1
- 3 Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW. Chem. Rev. 2014; 114: 9919
- 5 Semiconductors and Semimetals: Semiconductors for Photocatalysis. Mi Z, Wang L, Jagadish C. Academic; New York 2017: 97
- 11 Augugliaro V, Camera-Roda G, Loddo V, Palmisano G, Palmisano L, Parrino F, Puma MA. Appl. Catal., B 2012; 111: 555
- 12 Bellardita M, Loddo V, Palmisano G, Pibiri I, Palmisano L, Augugliaro V. Appl. Catal., B 2014; 144: 607
- 13 Yurdakal S, Tek BS, Alagöz O, Augugliaro V, Loddo V, Palmisano G, Palmisano L. ACS Sustainable Chem. Eng. 2013; 1: 456
- 16 Heylen S, Smet S, Laurier KGM, Hofkens J, Roeffaers MBJ, Martens JA. Catal. Sci. Technol. 2012; 2: 1802
- 17 Augugliaro V, Loddo V, López-Muñoz MJ, Márquez-Alvarez C, Palmisano G, Palmisano L, Yurdakal S. Photochem. Photobiol. Sci. 2009; 8: 663
- 18 Chong R, Li J, Zhou X, Ma Y, Yang J, Huang L, Han H, Zhang F, Li C. Chem. Commun. (Cambridge) 2014; 50: 165
- 30 Imamura K, Tsukahara H, Hamamichi K, Seto N, Hashimoto K, Kominami H. Appl. Catal., A 2013; 450: 28
- 31 Colmenares JC, Ouyang W, Ojeda M, Kuna E, Chernyayeva O, Lisovytskiy D, De S, Luque R, Balu AM. Appl. Catal., B 2016; 183: 107
- 36 Tada H, Ishida T, Takao A, Ito S, Mukhopadhyay S, Akita T, Tanaka K, Kobayashi H. ChemPhysChem 2005; 6: 1537
- 47 Higashimoto S, Shirai R, Osano Y, Azuma M, Ohue H, Sakata Y, Kobayashi H. J. Catal. 2014; 311: 137
- 51 Dadashi-Silab S, Asiri AM, Khan SB, Alamry KA, Yagci Y. J. Polym. Sci., Part A: Polym. Chem. 2014; 52: 1500
- 58 Cherevatskaya M, Neumann M, Füldner S, Harlander C, Kümmel S, Dankesreiter S, Pfitzner A, Zeitler K, König B. Angew. Chem. Int. Ed. 2012; 51: 4062
- 69 Wang H, Jiang S, Chen S, Li D, Zhang X, Shao W, Sun X, Xie J, Zhao Z, Zhang Q, Tian Y, Xie Y. Adv. Mater. (Weinheim, Ger.) 2016; 28: 6940
- 79 Irigoyen-Campuzano R, González-Béjar M, Pino E, Proal-Nájera JB, Pérez-Prieto J. Chem.–Eur. J. 2017; 23: 2867
- 82 Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, Eubank JF, Heurtaux D, Clayette P, Kreuz C, Chang J.-S, Hwang YK, Marsaud V, Bories P.-N, Cynober L, Gil S, Férey G, Couvreur P, Gref R. Nat. Mater. 2010; 9: 172
- 84 Katz MJ, Brown ZJ, Colón YJ, Siu PW, Scheidt KA, Snurr RQ, Hupp JT, Farha OK. Chem. Commun. (Cambridge) 2013; 49: 9449
- 85 Feng D, Chung W.-C, Wei Z, Gu Z.-Y, Jiang H.-L, Chen Y.-P, Darensbourg DJ, Zhou H.-C. J. Am. Chem. Soc. 2013; 135: 17105