König, B.: 2019 Science of Synthesis, 2018/6: Photocatalysis in Organic Synthesis DOI: 10.1055/sos-SD-229-00329
Photocatalysis in Organic Synthesis

19 Heterogeneous Photocatalysis in Organic Synthesis

More Information

Book

Editor: König, B.

Authors: Akita, M. ; Albero, J.; Amador, A. G. ; Ashley, M. A.; Brasholz, M. ; Corcé, V.; DiRocco, D. A.; Dix, S.; Ehrnsberger, P.; Fensterbank, L. ; Gaida, F.; García, H.; Ghosh, I. ; Gilmour, R.; Griesbeck, A. G. ; Gutiérrez Bonet, Á.; Hepburn, H. B. ; Hopkinson, M. N. ; Kelly, C. B.; Koike, T. ; Laha, R. ; Lang, S. B.; Leonori, D. ; Lévêque, C.; Li, P.; Lu, L.-Q. ; Matsui, J. K.; Melchiorre, P. ; Molander, G. A. ; Mudd, R. J.; Ollivier, C.; Pandey, G.; Phelan, J.; Reiser, O.; Rey, Y. P.; Rovis, T.; Ruffoni, A.; Scholz, S. O. ; Schultz, D. M.; Skubi, K. L. ; Speckmeier, E.; Thullen, S. M.; Vollmer, M.; Wang, L. ; Wang, M.; Wei, Y.; Xiao, W.-J. ; Yoon, T. P. ; Zeitler, K. ; Zhou, Q.-Q.

Title: Photocatalysis in Organic Synthesis

Print ISBN: 9783132417021; Online ISBN: 9783132417069; Book DOI: 10.1055/b-006-161273

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner (Editor-in-Chief), A.; Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 

Abstract

In recent years, heterogeneous photocatalysis has emerged as a very appealing approach, not only for the degradation of pollutants, but also for the synthesis of chemicals. Although the main use of heterogeneous photocatalysis so far has been the mineralization and complete degradation of organic compounds, interest in the application of heterogeneous (photo)catalysts in organic synthesis is growing due to their potential application in the fabrication of renewable fuels as well as in the preparation of compounds and intermediates especially valuable to the chemical industry, such as pharmaceuticals or polymers. The synthesis of organic molecules assisted by heterogeneous photocatalysts has been dominated by the use of inorganic metal oxide semiconductors, especially titanium(IV) oxide; the use of other semiconductor materials, such as inorganic chalcogenides, carbon-based semiconductors, or metal–organic frameworks has been less explored. In this chapter we show that, in spite of the potential and the large number of heterogeneous photocatalysts already studied, the state of the art of heterogeneous photocatalysis in organic synthesis is still unsatisfactory and much below expectation, particularly in reactions other than oxidation and reduction, such as cross couplings, oxidative decarboxylations, and cycloadditions.

 
  • 1 Fujishima A, Honda K. Nature (London) 1972; 238: 37
  • 2 Nosaka Y, Nosaka A. Y, Photocatalysis and Water Purification: From Fundamentals to Recent Applications. Pichat P. Wiley-VCH; Weinheim, Germany 2013. 1.
  • 3 Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann D. W. Chem. Rev 2014; 114: 9919
  • 4 Nakata K, Fujishima A. J. Photochem. Photobiol., C 2012; 13: 169
  • 5 Semiconductors and Semimetals: Semiconductors for Photocatalysis. Mi Z, Wang L, Jagadish C. Academic; New York 2017. 97.
  • 6 Low J, Yu J, Jaroniec M, Wageh S, Al-Ghamdi A. A. Adv. Mater. (Weinheim, Ger.) 2017; 29: 1601 694
  • 7 Prier C. K, Rankic D. A, MacMillan D. W. C. Chem. Rev 2013; 113: 5322
  • 8 Cherevatskaya M, König B. Russ. Chem. Rev. (Engl. Transl.) 2014; 83: 183
  • 9 Li R, Kobayashi H, Guo J, Fan J. J. Phys. Chem. C 2011; 115: 23408
  • 10 Li C.-J, Xu G.-R, Zhang B, Gong J. R. Appl. Catal., B 2012; 115: 201
  • 11 Augugliaro V, Camera-Roda G, Loddo V, Palmisano G, Palmisano L, Parrino F, Puma M. A. Appl. Catal., B 2012; 111: 555
  • 12 Bellardita M, Loddo V, Palmisano G, Pibiri I, Palmisano L, Augugliaro V. Appl. Catal., B 2014; 144: 607
  • 13 Yurdakal S, Tek B. S, Alagöz O, Augugliaro V, Loddo V, Palmisano G, Palmisano L. ACS Sustainable Chem. Eng 2013; 1: 456
  • 14 Wang C.-y, Groenzin H, Shultz M. J. J. Am. Chem. Soc 2004; 126: 8094
  • 15 Fox M. A, Abdel-Wahab A. A. Tetrahedron Lett 1990; 31: 4533
  • 16 Heylen S, Smet S, Laurier K. G. M, Hofkens J, Roeffaers M. B. J, Martens J. A. Catal. Sci. Technol 2012; 2: 1802
  • 17 Augugliaro V, Loddo V, López-Muñoz M. J, Márquez-Alvarez C, Palmisano G, Palmisano L, Yurdakal S. Photochem. Photobiol. Sci 2009; 8: 663
  • 18 Chong R, Li J, Zhou X, Ma Y, Yang J, Huang L, Han H, Zhang F, Li C. Chem. Commun. (Cambridge) 2014; 50: 165
  • 19 Molinari A, Montoncello M, Rezala H, Maldotti A. Photochem. Photobiol. Sci 2009; 8: 613
  • 20 Brezová V, Blažková A, Šurina I, Havlínová B. J. Photochem. Photobiol., A 1997; 107: 233
  • 21 Ohno T, Tokieda K, Higashida S, Matsumura M. Appl. Catal., A 2003; 244: 383
  • 22 Fujihira M, Satoh Y, Osa T. Nature (London) 1981; 293: 206
  • 23 Lv K, Lu C. S. Chem. Eng. Technol 2008; 31: 1272
  • 24 Fox M. A, Younathan J. N. Tetrahedron 1986; 42: 6285
  • 25 Almquist C. B, Biswas P. Appl. Catal., A 2001; 214: 259
  • 26 Hakki A, Dillert R, Bahnemann D. W. Phys. Chem. Chem. Phys 2013; 15: 2992
  • 27 Guerrero-Araque D, Acevedo-Peña P, Ramírez-Ortega D, Gómez R. New J. Chem 2017; 41: 12655
  • 28 Ni X, Ye J, Dong C. J. Photochem. Photobiol., A 2006; 181: 19
  • 29 Weng Z, Ni X, Yang D, Wang J, Chen W. J. Photochem. Photobiol., A 2009; 201: 151
  • 30 Imamura K, Tsukahara H, Hamamichi K, Seto N, Hashimoto K, Kominami H. Appl. Catal., A 2013; 450: 28
  • 31 Colmenares J. C, Ouyang W, Ojeda M, Kuna E, Chernyayeva O, Lisovytskiy D, De S, Luque R, Balu A. M. Appl. Catal., B 2016; 183: 107
  • 32 Yoshida H, Yuzawa H, Aoki M, Otake K, Itoh H, Hattori T. Chem. Commun. (Cambridge) 2008; 4634
  • 33 Ide Y, Ogino R, Sadakane M, Sano T. ChemCatChem 2013; 5: 766
  • 34 Selvam K, Swaminathan M. Tetrahedron Lett 2010; 51: 4911
  • 35 Ohtani B, Osaki H, Nishimoto S.-i, Kagiya T. Chem. Lett 1985; 14: 1075
  • 36 Tada H, Ishida T, Takao A, Ito S, Mukhopadhyay S, Akita T, Tanaka K, Kobayashi H. ChemPhysChem 2005; 6: 1537
  • 37 Yan J, Li B, Zhou F, Liu W. ACS Macro Lett 2013; 2: 592
  • 38 Bansal A, Kumar A, Kumar P, Bojja S, Chatterjee A. K, Ray S. S, Jain S. L. RSC Adv 2015; 5: 21189
  • 39 Ciambelli P, Sannino D, Palma V, Vaiano V. Catal. Today 2005; 99: 143
  • 40 Selvam K, Swaminathan M. Catal. Commun 2011; 12: 389
  • 41 McTiernan C. D, Leblanc X, Scaiano J. C. ACS Catal 2017; 7: 2171
  • 42 Shiraishi Y, Ikeda M, Tsukamoto D, Tanaka S, Hirai T. Chem. Commun. (Cambridge) 2011; 47: 4811
  • 43 Wang B, Durantini J, Nie J, Lanterna A. E, Scaiano J. C. J. Am. Chem. Soc 2016; 138: 13127
  • 44 Akpan U. G, Hameed B. H. Appl. Catal., A 2010; 375: 1
  • 45 Zhang Z, Luo Z, Yang Z, Zhang S, Zhang Y, Zhou Y, Wang X, Fu X. RSC Adv 2013; 3: 7215
  • 46 Yurdakal S, Augugliaro V, Loddo V, Palmisano G, Palmisano L. New J. Chem 2012; 36: 1762
  • 47 Higashimoto S, Shirai R, Osano Y, Azuma M, Ohue H, Sakata Y, Kobayashi H. J. Catal 2014; 311: 137
  • 48 Vinu R, Madras G. Appl. Catal., A 2009; 366: 130
  • 49 Yu J. C, Yu J, Ho W, Jiang Z, Zhang L. Chem. Mater 2002; 14: 3808
  • 50 Kamegawa T, Takeuchi R, Matsuoka M, Anpo M. Catal. Today 2006; 111: 248
  • 51 Dadashi-Silab S, Asiri A. M, Khan S. B, Alamry K. A, Yagci Y. J. Polym. Sci., Part A: Polym. Chem 2014; 52: 1500
  • 52 Dadashi-Silab S, Yar Y, Yagci Acar H, Yagci Y. Polym. Chem 2015; 6: 1918
  • 53 Tanaka A, Hashimoto K, Kominami H. Chem. Commun. (Cambridge) 2011; 47: 10446
  • 54 Zhang S, Chang C, Huang Z, Ma Y, Gao W, Li J, Qu Y. ACS Catal 2015; 5: 6481
  • 55 Zhang Y, Ciriminna R, Palmisano G, Xu Y.-J, Pagliaro M. RSC Adv 2014; 4: 18341
  • 56 Morishita M, Shiraishi Y, Hirai T. J. Phys. Chem. B 2006; 110: 17898
  • 57 Riente P, Matas Adams A, Albero J, Palomares E, Pericàs M. A. Angew. Chem. Int. Ed 2014; 53: 9613
  • 58 Cherevatskaya M, Neumann M, Füldner S, Harlander C, Kümmel S, Dankesreiter S, Pfitzner A, Zeitler K, König B. Angew. Chem. Int. Ed 2012; 51: 4062
  • 59 Furukawa S, Tamura A, Shishido T, Teramura K, Tanaka T. Appl. Catal., B 2011; 110: 216
  • 60 Zhang Y, Zhang N, Tang Z.-R, Xu Y.-J. ACS Nano 2012; 6: 9777
  • 61 Zhang Y, Zhang N, Tang Z.-R, Xu Y.-J. Chem. Sci 2012; 3: 2812
  • 62 Chen Z, Xu J, Ren Z, He Y, Xiao G. Catal. Commun 2013; 41: 83
  • 63 Liu S, Zhang N, Tang Z.-R, Xu Y.-J. ACS Appl. Mater. Interfaces 2012; 4: 6378
  • 64 Onoe J, Kawai T. J. Chem. Soc., Chem. Commun 1987; 1480
  • 65 Pehlivanugullari H. C, Sumer E, Kisch H. Res. Chem. Intermed 2007; 33: 297
  • 66 Long B, Ding Z, Wang X. ChemSusChem 2013; 6: 2074
  • 67 Savateev A, Dontsova D, Kurpil B, Antonietti M. J. Catal 2017; 350: 203
  • 68 Zhang P, Wang Y, Li H, Antonietti M. Green Chem 2012; 14: 1904
  • 69 Wang H, Jiang S, Chen S, Li D, Zhang X, Shao W, Sun X, Xie J, Zhao Z, Zhang Q, Tian Y, Xie Y. Adv. Mater. (Weinheim, Ger.) 2016; 28: 6940
  • 70 Zhang P, Wang Y, Yao J, Wang C, Yan C, Antonietti M, Li H. Adv. Synth. Catal 2011; 353: 1447
  • 71 Song T, Zhou B, Peng G.-W, Zhang Q.-B, Wu L.-Z, Liu Q, Wang Y. Chem.–Eur. J 2014; 20: 678
  • 72 Kiskan B, Zhang J, Wang X, Antonietti M, Yagci Y. ACS Macro Lett 2012; 1: 546
  • 73 Meyer A. U, Lau V. W.-h, König B, Lotsch B. V. Eur. J. Org. Chem 2017; 2179
  • 74 Sharma P, Sasson Y. Green Chem 2017; 19: 844
  • 75 Li H, Liu R, Lian S, Liu Y, Huang H, Kang Z. Nanoscale 2013; 5: 3289
  • 76 Dibenedetto A, Zhang J, Trochowski M, Angelini A, Macyk W, Aresta M. J. CO2 Util 2017; 20: 97
  • 77 Zhao Y, Antonietti M. Angew. Chem. Int. Ed 2017; 56: 9336
  • 78 Wang Z. J, Landfester K, Zhang K. A. I. Polym. Chem 2014; 5: 3559
  • 79 Irigoyen-Campuzano R, González-Béjar M, Pino E, Proal-Nájera J. B, Pérez-Prieto J. Chem.–Eur. J 2017; 23: 2867
  • 80 Wang C.-A, Li Y.-W, Cheng X.-L, Zhang J.-P, Han Y.-F. RSC Adv 2017; 7: 408
  • 81 OʼKeeffe M, Eddaoudi M, Li H, Reineke T, Yaghi O. M. J. Solid State Chem 2000; 152: 3
  • 82 Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, Eubank J. F, Heurtaux D, Clayette P, Kreuz C, Chang J.-S, Hwang Y. K, Marsaud V, Bories P.-N, Cynober L, Gil S, Férey G, Couvreur P, Gref R. Nat. Mater 2010; 9: 172
  • 83 Zhou H.-C, Kitagawa S. Chem. Soc. Rev 2014; 43: 5415
  • 84 Katz M. J, Brown Z. J, Colón Y. J, Siu P. W, Scheidt K. A, Snurr R. Q, Hupp J. T, Farha O. K. Chem. Commun. (Cambridge) 2013; 49: 9449
  • 85 Feng D, Chung W.-C, Wei Z, Gu Z.-Y, Jiang H.-L, Chen Y.-P, Darensbourg D. J, Zhou H.-C. J. Am. Chem. Soc 2013; 135: 17105
  • 86 Bordiga S, Lamberti C, Ricchiardi G, Regli L, Bonino F, Damin A, Lillerud K.-P, Bjorgen M, Zecchina A. Chem. Commun. (Cambridge) 2004; 2300
  • 87 Alvaro M, Carbonell E, Ferrer B, Llabrés i Xamena F. X, García H. Chem.–Eur. J 2007; 13: 5106
  • 88 Wang C.-C, Li J.-R, Lv X.-L, Zhang Y.-Q, Guo G. Energy Environ. Sci 2014; 7: 2831
  • 89 Fu Y, Sun L, Yang H, Xu L, Zhang F, Zhu W. Appl. Catal., B 2016; 187: 212
  • 90 Zhang R, Li G, Zhang Y. Photochem. Photobiol. Sci 2017; 16: 996
  • 91 Wang D, Albero J, García H, Li Z. J. Catal 2017; 349: 156
  • 92 Sun D, Ye L, Li Z. Appl. Catal., B 2015; 164: 428
  • 93 Wang C, Xie Z, deKrafft K. E, Lin W. J. Am. Chem. Soc 2011; 133: 13445
  • 94 Wang D, Wang M, Li Z. ACS Catal 2015; 5: 6852