2 Mechanistic Aspects of Carbon—Boron Bond Formation
Book
Editor: Fernández, E.
Title: Advances in Organoboron Chemistry towards Organic Synthesis
Print ISBN: 9783132429710; Online ISBN: 9783132429758; Book DOI: 10.1055/b-006-164898
1st edition © 2020. Thieme. All rights reserved.
Georg Thieme Verlag KG, Stuttgart
Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry
Science of Synthesis Reference Libraries
Parent publication
Title: Science of Synthesis
DOI: 10.1055/b-00000101
Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.
Type: Multivolume Edition
Abstract
Mechanisms for the selective formation of carbon–boron bonds under mild reaction conditions can be better understood with the help of computational studies, either alone or in collaboration with experimental research. There is a diversity of reaction mechanisms, many of which can be effectively characterized with currently available techniques.
Key words
carbon–boron bonds - hydroboration - borylation - nucleophilic substitution - electrophilic substitution - Lewis base catalysts - computational studies- 6 Pietsch S, Neeve EC, Apperley DC, Bertermann R, Mo F, Qiu D, Cheung MS, Dang L, Wang J, Radius U, Lin Z, Kleeberg C, Marder TB. Chem.–Eur. J. 2015; 21: 7082
- 8 Huang X, Lin Z, In: Computational Modeling of Homogeneous Catalysis Maseras F, Lledós A. Springer Boston 2002; 189
- 25 Verma A, Snead RF, Dai Y, Slebodnick C, Yang Y, Yu H, Yao F, Santos WL. Angew. Chem. Int. Ed. 2017; 56: 5111
- 27 García-López D, Civit MG, Vogels CM, Ricart JM, Westcott SA, Fernández E, Carbó JJ. Catal. Sci. Technol. 2018; 8: 3617
- 30 Hata T, Kitagawa H, Masai H, Kurahashi T, Shimizu M, Hiyama T. Angew. Chem. Int. Ed. 2001; 40: 790
- 35 García L, Sendra J, Miralles N, Reyes E, Carbó JJ, Vicario JL, Fernández E. Chem.–Eur. J. 2018; 24: 14059
- 37 Wu H, Garcia JM, Haeffner F, Radomkit S, Zhugralin AR, Hoveyda AH. J. Am. Chem. Soc. 2015; 137: 10585
- 48 Geier SJ, LaFortune JHW, Zhu D, Kosnik SC, Macdonald CLB, Stephan DW, Westcott SA. Dalton Trans. 2017; 46: 10876
- 50 Daley EN, Vogels CM, Geier SJ, Decken A, Doherty S, Westcott SA. Angew. Chem. Int. Ed. 2015; 54: 2121
- 52 Civit MG, Sanz X, Vogels CM, Webb JD, Geier SJ, Decken A, Bo C, Westcott SA, Fernández E. J. Org. Chem. 2015; 80: 2148
- 53 Sanz X, Vogels CM, Decken A, Bo C, Westcott SA, Fernández E. Chem. Commun. (Cambridge) 2014; 50: 8420
- 60 Royes J, Ni S, Farré A, La Cascia E, Carbó JJ, Cuenca AB, Maseras F, Fernández E. ACS Catal. 2018; 8: 2833
- 67 Isegawa M, Sameera WMC, Sharma AK, Kitanosono T, Kato M, Kobayashi S, Morokuma K. ACS Catal. 2017; 7: 5370
- 77 Ansell MB, Menezes da Silva VH, Heerdt G, Braga AAC, Spencer J, Navarro O. Catal. Sci. Technol. 2016; 6: 7461
- 78 Lillo V, Mas-Marzá E, Segarra AM, Carbó JJ, Bo C, Peris E, Fernández E. Chem. Commun. (Cambridge) 2007; 3380
- 81 Lillo V, Fructos MR, Ramírez J, Braga AAC, Maseras F, Díaz-Requejo MM, Pérez PJ, Fernández E. Chem.–Eur. J. 2007; 13: 2614
- 88 Vanchura II BA, Preshlock SM, Roosen PC, Kallepalli VA, Staples RJ, Maleczka Jr RE, Singleton DA, Smith III MR. Chem. Commun. (Cambridge) 2010; 46: 7724
- 89 Roosen PC, Kallepalli VA, Chattopadhyay B, Singleton DA, Maleczka Jr RE, Smith III MR. J. Am. Chem. Soc. 2012; 134: 11350
- 92 Bai H, Xu H, Zhang H, Guo Y, Shan J, Wei D, Zhu Y, Zhang S, Zhang W. Catal. Sci. Technol. 2018; 8: 5165
- 96 Hartwig JF, Cook KS, Hapke M, Incarvito CD, Fan Y, Webster CE, Hall MB. J. Am. Chem. Soc. 2005; 127: 2538