Fernández, E.: 2020 Science of Synthesis, 2019/6: Advances in Organoboron Chemistry towards Organic Synthesis DOI: 10.1055/sos-SD-230-00085
Advances in Organoboron Chemistry towards Organic Synthesis

7 Borylative Ring Opening

More Information

Book

Editor: Fernández, E.

Authors: Aggarwal, V. K.; Ahmed, E.-A. M. A.; Aiken, S. G.; Bateman, J. M.; Boldrini, C.; Bose, S. K.; Carbó, J. J.; Cho, H. Y.; Clark, T. B.; Fernández, E.; Fu, Y.; Geetharani, K.; Gong, T.-J.; Ito, H.; Kitanosono, T.; Kobayashi, S.; Kubota, K.; Maseras, F.; Ohmiya, H.; Pineschi, M.; Ping, Y.; Sawamura, M.; Wang, J.; Wang, Y.-F.; Wu, C.; Xu, L.; Yoshida, H.; Zhang, F.-L.

Title: Advances in Organoboron Chemistry towards Organic Synthesis

Print ISBN: 9783132429710; Online ISBN: 9783132429758; Book DOI: 10.1055/b-006-164898

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

This review describes published methods for the direct introduction of a boron atom into organic molecules by ring opening of strained cyclic systems using nucleophilic diboron species. Considering the synthetic versatility of functionalized organoboron derivatives, the newly formed carbon–boron bond thus installed paves the way for a wide range of useful subsequent transformations.

 
  • 1 Sumida Y, Yorimitsu H, Oshima K. Org. Lett. 2008; 10: 4677
  • 2 Ramachandran PV, Pratihar D, Biswas D. Org. Lett. 2006; 8: 3877
  • 3 Sumida Y, Yorimitsu H, Oshima K. J. Org. Chem. 2009; 74: 3196
  • 4 Crotti S, Bertolini F, Macchia F, Pineschi M. Org. Lett. 2009; 11: 3762
  • 5 Takahashi K, Ishiyama T, Miyaura N. Chem. Lett. 2000; 982
  • 6 Takahashi K, Ishiyama T, Miyaura N. J. Organomet. Chem. 2001; 625: 47
  • 7 Ito H, Yamanaka H, Tateiwa J.-i, Hosomi A. Tetrahedron Lett. 2000; 41: 6821
  • 8 Tortosa M. Angew. Chem. Int. Ed. 2011; 50: 3950
  • 9 Zhao J, Szabó KJ. Angew. Chem. Int. Ed. 2016; 55: 1502
  • 10 Zhao TSN, Yang Y, Lessing T, Szabó KJ. J. Am. Chem. Soc. 2014; 136: 7563
  • 11 Ebrahim-Alkhalil A, Zhang Z.-Q, Gong T.-J, Su W, Lu X.-Y, Xiao B, Fu Y. Chem. Commun. (Cambridge) 2016; 52: 4891
  • 12 Ebrahim-Alkhalil MAA, Lu X, Gong T.-J, Zhang Z.-Q, Xiao B, Fu Y. Chem. Commun. (Cambridge) 2017; 53: 909
  • 13 Miralles N, Gómez JE, Kleij AW, Fernández E. Org. Lett. 2017; 19: 6096
  • 14 Micalizio GC, Schreiber SL. Angew. Chem. Int. Ed. 2002; 41: 152
  • 15 Ramachandran PV. Future Med. Chem. 2013; 5: 611
  • 16 Baker SJ, Ding CZ, Akama T, Zhang Y.-K, Hernandez V, Xia Y. Future Med. Chem. 2009; 1: 1275
  • 17 Lee H, Han JT, Yun J. ACS Catal. 2016; 6: 6487
  • 18 Sebelius S, Olsson VJ, Szabó KJ. J. Am. Chem. Soc. 2005; 127: 10478
  • 19 Takeda Y, Kuroda A, Sameera WMC, Morokuma K, Minakata S. Chem. Sci. 2016; 7: 6141
  • 20 Vedrenne E, Wallner OA, Vitale M, Schmidt F, Aggarwal VK. Org. Lett. 2009; 11: 165
  • 21 Sanz X, Lee GM, Pubill-Ulldemolins C, Bonet A, Gulyás H, Westcott SA, Bo C, Fernández E. Org. Biomol. Chem. 2013; 11: 7004
  • 22 Chen C, Shen X, Chen J, Hong X, Lu Z. Org. Lett. 2017; 19: 5422
  • 23 Vasilikogiannaki E, Louka A, Stratakis M. Organometallics 2016; 35: 3895
  • 24 Raptis C, Garcia H, Stratakis M. Angew. Chem. Int. Ed. 2009; 48: 3133
  • 25 Murray SA, Liang MZ, Meek SJ. J. Am. Chem. Soc. 2017; 139: 14061
  • 26 Murray SA, Luc ECM, Meek SJ. Org. Lett. 2018; 20: 469