Fernández, E.: 2020 Science of Synthesis, 2019/6: Advances in Organoboron Chemistry towards Organic Synthesis DOI: 10.1055/sos-SD-230-00174
Advances in Organoboron Chemistry towards Organic Synthesis

10 Borylation Reactions in Water

Weitere Informationen

Buch

Herausgeber: Fernández, E.

Autoren: Aggarwal, V. K.; Ahmed, E.-A. M. A.; Aiken, S. G.; Bateman, J. M.; Boldrini, C.; Bose, S. K.; Carbó, J. J.; Cho, H. Y.; Clark, T. B.; Fernández, E.; Fu, Y.; Geetharani, K.; Gong, T.-J.; Ito, H.; Kitanosono, T.; Kobayashi, S.; Kubota, K.; Maseras, F.; Ohmiya, H.; Pineschi, M.; Ping, Y.; Sawamura, M.; Wang, J.; Wang, Y.-F.; Wu, C.; Xu, L.; Yoshida, H.; Zhang, F.-L.

Titel: Advances in Organoboron Chemistry towards Organic Synthesis

Print ISBN: 9783132429710; Online ISBN: 9783132429758; Buch-DOI: 10.1055/b-006-164898

Fachgebiete: Organische Chemie;Chemische Reaktionen, Katalyse;Organometallchemie;Chemische Labormethoden, Stöchiometrie

Science of Synthesis Reference Libraries



Übergeordnete Publikation

Titel: Science of Synthesis

DOI: 10.1055/b-00000101

Reihenherausgeber: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Typ: Mehrbändiges Werk

 


Abstract

Organoboron compounds are integral to modern synthetic organic chemistry as their C–B linkages undergo a range of chemical transformations. Their privileged position is underpinned by their versatile transformability with retention of stereochemistry, as well as their non-toxic nature and excellent functional-group tolerance. Although water has become a common medium in the reaction of organoboron compounds, such as Suzuki–Miyaura couplings, C–B bond formations in aqueous media have emerged only recently. This chapter offers an overview of recent developments across the broad landscape of organoboron chemistry, using solvent amounts of water and covering a range of C–B bond-formation processes, including enantioselective reactions.

 
  • 1 Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials. Hall DG. Wiley-VCH; Weinheim, Germany 2011
  • 2 Synthesis and Application of Organoboron Compounds. Fernández E, Whiting A. Springer; Cham, Switzerland 2015
  • 3 Cuenca AB, Shishido R, Ito H, Fernández E. Chem. Soc. Rev. 2017; 46: 415
  • 4 Neeve EC, Geier SJ, Mkhalid IAI, Westcott SA, Marder TB. Chem. Rev. 2016; 116: 9091
  • 5 Lipshutz BH, Moser R, Voigtritter KR. Isr. J. Chem. 2010; 50: 691
  • 8 Chen K, Cheung MS, Lin Z, Li P. Org. Chem. Front. 2016; 3: 875
  • 10 Zernickel A, Du W, Ghorpade SA, Sawant DN, Makki AA, Sekar N, Eppinger J. J. Org. Chem. 2018; 83: 1842
  • 11 Xu SD, Sun FZ, Deng WH, Hao H, Duan XH. New J. Chem. 2018; 42: 16464
  • 13 Qi X, Jiang L.-B, Zhou C, Peng J.-B, Wu X.-F. ChemistryOpen 2017; 6: 345
  • 14 Qi X, Li H.-P, Peng J.-B, Wu X.-F. Tetrahedron Lett. 2017; 58: 3851
  • 15 Erb W, Hellal A, Albini M, Rouden J, Blanchet J. Chem.–Eur. J. 2014; 20: 6608
  • 16 Erb W, Albini M, Rouden J, Blanchet J. J. Org. Chem. 2014; 79: 10568
  • 17 Yang C.-T, Zhang Z.-Q, Tajuddin H, Wu C.-C, Liang J, Liu J.-H, Fu Y, Czyzewska M, Steel PG, Marder TB, Liu L. Angew. Chem. Int. Ed. 2012; 51: 528
  • 18 Joshi-Pangu A, Ma X, Diane M, Iqbal S, Kribs RJ, Huang R, Wang C.-Y, Biscoe MR. J. Org. Chem. 2012; 77: 6629
  • 19 Endo K, Ohkubo T, Ishioka T, Shibata T. J. Org. Chem. 2012; 77: 4826
  • 21 Nelson AK, Peck CL, Rafferty SM, Santos WL. J. Org. Chem. 2016; 81: 4269
  • 22 Tai C.-C, Yu M.-S, Chen Y.-L, Chuang W.-H, Lin T.-H, Yap GPA, Ong T.-G. Chem. Commun. (Cambridge) 2014; 50: 4344
  • 23 Tanaka C, Nakamura K, Nishikata T. Tetrahedron 2017; 73: 3999
  • 24 Xuan Q.-Q, Wei Y.-H, Song Q.-L. Chin. Chem. Lett. 2017; 28: 1163
  • 25 Stavber G, Časar Z. Appl. Organomet. Chem. 2013; 27: 159
  • 26 Yao Z.-J, Hong S, Zhang W, Liu M, Deng W. Tetrahedron Lett. 2016; 57: 910
  • 27 da Costa JS, Braun RK, Horn PA, Lüdtke DS, Moro AV. RSC Adv. 2016; 6: 59935
  • 28 Raducan M, Alam R, Szabó KJ. Angew. Chem. Int. Ed. 2012; 51: 13050
  • 29 Alam R, Raducan M, Eriksson L, Szabó KJ. Org. Lett. 2013; 15: 2546
  • 30 Takeda Y, Kuroda A, Sameera WMC, Morokuma K, Minakata S. Chem. Sci. 2016; 7: 6141
  • 32 Kamei T, Nishino S, Shimada T. Tetrahedron Lett. 2018; 59: 2896
  • 34 Isegawa M, Sameera WMC, Sharma AK, Kitanosono T, Kato M, Kobayashi S, Morokuma K. ACS Catal. 2017; 7: 5370
  • 35 Tehfe M.-A, Monot J, Malacria M, Fensterbank L, Fouassier J.-P, Curran DP, Lacôte E, Lalevée J. ACS Macro Lett. 2012; 1: 92
  • 36 Kan SBJ, Huang X, Gumulya Y, Chen K, Arnold FH. Nature (London) 2017; 552: 132
  • 37 Huang X, Garcia-Borràs M, Miao K, Kan SBJ, Zutshi A, Houk KN, Arnold FH. ACS Cent. Sci. 2019; 5: 270
  • 39 Hemming D, Fritzemeier R, Westcott SA, Santos WL, Steel PG. Chem. Soc. Rev. 2018; 47: 7477
  • 40 Chea H, Sim H.-S, Yun J. Bull. Korean Chem. Soc. 2010; 31: 551
  • 41 Ibrahem I, Breistein P, Córdova A. Angew. Chem. Int. Ed. 2011; 50: 12036
  • 43 Thorpe SB, Calderone JA, Santos WL. Org. Lett. 2012; 14: 1918
  • 44 Kobayashi S, Xu P, Endo T, Ueno M, Kitanosono T. Angew. Chem. Int. Ed. 2012; 51: 12763
  • 45 Li B, Wang L, Qin C, Zhu L. Catal. Commun. 2016; 86: 23
  • 46 Kitanosono T, Xu P, Kobayashi S. Chem.–Asian J. 2014; 9: 179
  • 47 Zhu L, Kitanosono T, Xu P, Kobayashi S. Beilstein J. Org. Chem. 2015; 11: 2007
  • 48 Kitanosono T, Xu P, Isshiki S, Zhu L, Kobayashi S. Chem. Commun. (Cambridge) 2014; 50: 9336
  • 49 Gandolfi R, Facchetti G, Christodoulou MS, Fuse M, Meneghetti F, Rimoldi I. ChemistryOpen 2018; 7: 393
  • 50 Kitanosono T, Xu P, Kobayashi S. Chem. Commun. (Cambridge) 2013; 49: 8184
  • 51 Reilly SW, Akurathi G, Box HK, Valle HU, Hollis TK, Webster CE. J. Organomet. Chem. 2016; 802: 32
  • 52 Kitanosono T, Kobayashi S. Asian J. Org. Chem. 2013; 2: 961
  • 53 Wen W, Han B, Yan F, Ding L, Li B, Wang L, Zhu L. Nanomaterials 2018; 8: 326
  • 54 Zhou X.-F, Sun Y.-Y, Wu Y.-D, Dai J.-J, Xu J, Huang Y, Xu H.-J. Tetrahedron 2016; 72: 5691
  • 55 Xuan Q, Zhao C, Song Q. Org. Biomol. Chem. 2017; 15: 5140