13 Boron “Ate” Complexes for Asymmetric Synthesis
Book
Editor: Fernández, E.
Title: Advances in Organoboron Chemistry towards Organic Synthesis
Print ISBN: 9783132429710; Online ISBN: 9783132429758; Book DOI: 10.1055/b-006-164898
1st edition © 2020. Thieme. All rights reserved.
Georg Thieme Verlag KG, Stuttgart
Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry
Science of Synthesis Reference Libraries
Parent publication
Title: Science of Synthesis
DOI: 10.1055/b-00000101
Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.
Type: Multivolume Edition
Abstract


Addition of a nucleophile to a boronic ester results in the generation of a tetravalent boronate “ate” complex. If there is a leaving group stationed on the carbon atom α to the boron atom, the boronate complex can undergo stereospecific 1,2-migration with simultaneous expulsion of the leaving group to form a homologated boronic ester. The enantioselectivity of the process is dictated by either incorporating a chiral substituent into the boronic ester component (substrate control), or by forming a boronate complex through the addition of an enantioenriched carbenoid species to a boronic ester (reagent control). Activation of a boronic ester with organolithium reagents generates a nucleophilic boronate complex that acts as a chiral organometallic-type reagent, reacting with a wide range of electrophiles with inversion of stereochemistry. This chapter discusses methodology available for the enantioselective homologation of boronic esters using both substrate- and reagent-controlled strategies, and the development of boronate complexes as chiral nucleophiles.
Key words
Matteson reaction - substrate control - reagent control - homologation of boronic esters - asymmetric deprotonation - lithiation–borylation - 1,2-migration - 1,2-metalate rearrangement - stereospecific - assembly-line synthesis - contiguous stereocenters - chiral organometallic reagents- 1 Matteson DS, Sadhu KM, Ray R, Jesthi PK, Peterson ML, Majumdar D, Tsai DJS, Hurst GD, Erdik E. J. Organomet. Chem. 1985; 281: 15
- 17 Mykura RC, Veth S, Varela A, Dewis L, Farndon JJ, Myers EL, Aggarwal VK. J. Am. Chem. Soc. 2018; 140: 14677
- 18 Larouche-Gauthier R, Fletcher CJ, Couto I, Aggarwal VK. Chem. Commun. (Cambridge) 2011; 47: 12592
- 27 Fandrick KR, Patel ND, Mulder JA, Gao J, Konrad M, Archer E, Buono FG, Duran A, Schmid R, Daeubler J, Fandrick DR, Ma S, Grinberg N, Lee H, Busacca CA, Song JJ, Yee NK, Senanayake CH. Org. Lett. 2014; 16: 4360
- 28 Fandrick KR, Mulder JA, Patel ND, Gao J, Konrad M, Archer E, Buono FG, Duran A, Schmid R, Daeubler J, Desrosiers J.-N, Zeng X, Rodriguez S, Ma S, Qu B, Li Z, Fandrick DR, Grinberg N, Lee H, Bosanac T, Takahashi H, Chen Z, Bartolozzi A, Nemoto P, Busacca CA, Song JJ, Yee NK, Mahaney PE, Senanayake CH. J. Org. Chem. 2015; 80: 1651
- 29 Blair DJ, Zhong S, Hesse MJ, Zabaleta N, Myers EL, Aggarwal VK. Chem. Commun. (Cambridge) 2016; 52: 5289
- 33 Partridge BM, Chausset-Boissarie L, Burns M, Pulis AP, Aggarwal VK. Angew. Chem. Int. Ed. 2012; 51: 11795
- 36 Hoppe D, Marr F, Brüggemann M, In: Organolithiums in Enantioselective Synthesis Hodgson DM. Springer London 2003; 73
- 40 Watson CG, Balanta A, Elford TG, Essafi S, Harvey JN, Aggarwal VK. J. Am. Chem. Soc. 2014; 136: 17370
- 43 Burns M, Essafi S, Bame JR, Bull SP, Webster MP, Balieu S, Dale JW, Butts CP, Harvey JN, Aggarwal VK. Nature (London) 2014; 513: 183
- 44 Balieu S, Hallett GE, Burns M, Bootwicha T, Studley J, Aggarwal VK. J. Am. Chem. Soc. 2015; 137: 4398
- 49 Fawcett A, Nitsch D, Ali M, Bateman JM, Myers EL, Aggarwal VK. Angew. Chem. Int. Ed. 2016; 55: 14663
- 57 Arnold K, Batsanov AS, Davies B, Grosjean C, Schütz T, Whiting A, Zawatzky K. Chem. Commun. (Cambridge) 2008; 3879
- 65 Coldham I, Patel JJ, Raimbault S, Whittaker DTE, Adams H, Fang GY, Aggarwal VK. Org. Lett. 2008; 10: 141