1.2. 2 Nickel/Photocatalyst Dual Catalysis
Book
Editor: Molander, G. A.
Title: Dual Catalysis in Organic Synthesis 1
Print ISBN: 9783132429765; Online ISBN: 9783132429802; Book DOI: 10.1055/b-006-164899
1st edition © 2020. Thieme. All rights reserved.
Georg Thieme Verlag KG, Stuttgart
Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry
Science of Synthesis Reference Libraries
Parent publication
Title: Science of Synthesis
DOI: 10.1055/b-00000101
Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.
Type: Multivolume Edition
Abstract
This chapter outlines the broad scope of photoredox/nickel dual catalysis. Among the newer approaches to organic synthesis that engender the concept of dual catalysis, photoredox/nickel dual-catalytic cross-coupling reactions comprise one of the most rapidly developing and powerful tactics. Taken as a whole, these transformations enable novel carbon–carbon and carbon–heteroatom bond constructions that were previously challenging, if not impossible, to carry out. Most remarkably, these processes are most often carried out under near-neutral reaction conditions at ambient temperatures, with the energy to drive the reactions being provided solely by visible-light sources, thus enabling the incorporation of a broad range of diverse functional groups. As described, the development of these processes therefore provides one means to address the longstanding challenge of late-stage assembly of highly functionalized molecules via cross-coupling strategies.
Key words
dual catalysis - nickel - photocatalysis - photoredox - cross coupling - carbon–carbon bond formation - carbon–heteroatom bond formation - radicals - late-stage functionalization- 1 Visible Light Photocatalysis in Organic Chemistry. Stephenson CRJ, Yoon TP, MacMillan DWC. Wiley-VCH; Weinheim, Germany 2018
- 9 Hartwig JF. Organotransition Metal Chemistry: From Bonding to Catalysis. University Science Books; Sausalito, CA 2010
- 16 Lima F, Kabeshov MA, Tran DN, Battilocchio C, Sedelmeier J, Sedelmeier G, Schenkel B, Ley SV. Angew. Chem. Int. Ed. 2016; 55: 14085
- 19 Zuo Z, Ahneman DT, Chu L, Terrett JA, Doyle AG, MacMillan DWC. Science (Washington, D. C.) 2014; 345: 437
- 27 Corcé V, Chamoreau L.-M, Derat E, Goddard J.-P, Ollivier C, Fensterbank L. Angew. Chem. Int. Ed. 2015; 54: 11414
- 29 Lévêque C, Chenneberg L, Corcé V, Goddard J.-P, Ollivier C, Fensterbank L. Org. Chem. Front. 2016; 3: 462
- 37 Bacauanu V, Cardinal S, Yamauchi M, Kondo M, Fernández DF, Remy R, MacMillan DWC. Angew. Chem. Int. Ed. 2018; 57: 12543
- 40 Tellis JC, Kelly CB, Primer DN, Jouffroy M, Patel NR, Molander GA. Acc. Chem. Res. 2016; 49: 1429
- 42 Hsieh H.-W, Coley CW, Baumgartner LM, Jensen KF, Robinson RI. Org. Process Res. Dev. 2018; 22: 542
- 46 Shaw MH, Shurtleff VW, Terrett JA, Cuthbertson JD, MacMillan DWC. Science (Washington, D. C.) 2016; 352: 1304
- 51 Twilton J, Christensen M, DiRocco DA, Ruck RT, Davies IW, MacMillan DWC. Angew. Chem. Int. Ed. 2018; 57: 5369
- 64 Knauber T, Chandrasekaran R, Tucker JW, Chen JM, Reese M, Rankic DA, Sach N, Helal C. Org. Lett. 2017; 19: 6566
- 65 Gianatassio R, Kawamura S, Eprile CL, Foo K, Ge J, Burns AC, Collins MR, Baran PS. Angew. Chem. Int. Ed. 2014; 53: 9851
- 84 Brauer DJ, Hingst M, Kottsieper KW, Liek C, Nickel T, Tepper M, Stelzer O, Sheldrick WS. J. Organomet. Chem. 2002; 645: 14
- 88 Liao L.-L, Gui Y.-Y, Zhang X.-B, Shen G, Liu H.-D, Zhou W.-J, Li J, Yu D.-G. Org. Lett. 2017; 19: 3735
- 94 Cabrera-Afonso MJ, Lu Z.-P, Kelly CB, Lang SB, Dykstra R, Gutierrez O, Molander GA. Chem. Sci. 2018; 9: 3186
- 98 Yang L, Huang Z, Li G, Zhang W, Cao R, Wang C, Xiao J, Xue D. Angew. Chem. Int. Ed. 2018; 57: 1968
- 99 Corcoran EB, Pirnot MT, Lin S, Dreher SD, DiRocco DA, Davies IW, Buchwald SL, MacMillan DWC. Science (Washington, D. C.) 2016; 353: 279
- 103 Nielsen MK, Shields BJ, Liu J, Williams MJ, Zacuto MJ, Doyle AG. Angew. Chem. Int. Ed. 2017; 129: 7297