Fensterbank, L. et al.: 2021 Science of Synthesis, 2020/5: Free Radicals: Fundamentals and Applications in Organic Synthesis 2 DOI: 10.1055/sos-SD-233-00001
Free Radicals: Fundamentals and Applications in Organic Synthesis 2

2.2 Samarium-Mediated Reductions

More Information

Book

Editors: Fensterbank, L.; Ollivier, C.

Authors: Bartulovich, C. O.; Bolduc, T. G.; Chciuk, T. V.; Chemla, F.; Clark, K. F.; Cormier, M.; Das, A. ; Desage-El Murr, M. ; Dimitrova, D.; Fagnoni, M. ; Flowers, R. A. II; Fukuyama, T. ; Goddard, J.-P. ; Hessin, C.; Liu, Z.-Q. ; Lu, Y.; Mitsudo, K.; Murphy, J. A.; Pérez-Luna, A. ; Protti, S. ; Qin, T. ; Ravelli, D. ; Ren, Y.; Ryu, I. ; Sammis, G. M.; Sibi, M. P.; Subramaniann, H.; Suga, S.; Sumino, S. ; Thomson, B.; Yamago, S.; Zhou, M.

Title: Free Radicals: Fundamentals and Applications in Organic Synthesis 2

Print ISBN: 9783132435544; Online ISBN: 9783132435551; Book DOI: 10.1055/b000000086

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner (Editor-in-Chief), A.; Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

Samarium(II)-based reductants have been shown to be a group of very powerful reagents whose reactivity can be tuned significantly by the use of additives. The use of additives has been shown to greatly impact the rate, diastereoselectivity, chemoselectivity, and mechanism by which these reactions proceed, making these systems extremely useful and versatile. These reagents have been shown to promote several reactions including reductions of a range of functional groups and a variety of carbon–carbon bond forming reactions. More recently, initial work has demonstrated catalytic reactions of samarium(II)-based reductants. This chapter focuses on the chemistry of samarium diiodide (SmI2) and a few other samarium(II)-based reductants, with examples of the reactions they promote, both with and without the use of additives. Additionally, recent work on the mechanistic understanding of catalytic reactions using terminal reductants and a novel example of an approach employing radical relay that negates the use of a terminal reductant are presented.

 
  • 1 Girard P, Namy J.-L, Kagan HB. J. Am. Chem. Soc. 1980; 102: 2693
  • 2 Handa Y, Inanaga J, Yamaguchi M. J. Chem. Soc., Chem. Commun. 1989; 298
  • 3 Künzer H, Stahnke M, Sauer G, Wiechert R. Tetrahedron Lett. 1991; 32: 1949
  • 4 Yoneda R, Harusawa S, Kurihara T. J. Org. Chem. 1991; 56: 1827
  • 5 Kende AS, Mendoza JS. Tetrahedron Lett. 1991; 32: 1699
  • 6 Inanaga J, Ishikawa M, Yamaguchi M. Chem. Lett. 1987; 16: 1485
  • 7 Ananthanarayan TP, Gallagher T, Magnus P. J. Chem. Soc., Chem. Commun. 1982; 709
  • 8 Crombie L, Rainbow LJ. Tetrahedron Lett. 1988; 29: 6517
  • 9 Molander GA, Hahn G. J. Org. Chem. 1986; 51: 1135
  • 10 Molander GA, Hahn G. J. Org. Chem. 1986; 51: 2596
  • 11 Inanaga J, Handa Y, Tabuchi T, Otsubo K, Yamaguchi M, Hanamoto T. Tetrahedron Lett. 1991; 32: 6557
  • 12 Cabrera A, Alper H. Tetrahedron Lett. 1992; 33: 5007
  • 13 Keck GE, McLaws MD. Tetrahedron Lett. 2005; 46: 4911
  • 14 Singh AK, Bakshi RK, Corey EJ. J. Am. Chem. Soc. 1987; 109: 6187
  • 15 Keck GE, Wager CA, Sell T, Wager TT. J. Org. Chem. 1999; 64: 2172
  • 16 Keck GE, Wager CA. Org. Lett. 2000; 2: 2307
  • 17 Prasad E, Flowers II RA. J. Am. Chem. Soc. 2002; 124: 6357
  • 18 Chopade PR, Davis TA, Prasad E, Flowers II RA. Org. Lett. 2004; 6: 2685
  • 19 Chopade PR, Prasad E, Flowers II RA. J. Am. Chem. Soc. 2004; 126: 44
  • 20 Kamochi Y, Kudo T. Chem. Lett. 1991; 20: 893
  • 21 Kamochi Y, Kudo T. Bull. Chem. Soc. Jpn. 1992; 65: 3049
  • 22 Kamochi Y, Kudo T. Chem. Lett. 1993; 22: 1495
  • 23 Just-Baringo X, Procter DJ. Acc. Chem. Res. 2015; 48: 1263
  • 24 Szostak M, Sautier B, Spain M, Procter DJ. Org. Lett. 2014; 16: 1092
  • 25 Dahlén A, Nilsson Å, Hilmersson G. J. Org. Chem. 2006; 71: 1576
  • 26 Szostak M, Fazakerley NJ, Parmar D, Procter DJ. Chem. Rev. 2014; 114: 5959
  • 27 Plesniak MP, Huang H.-M, Procter DJ. Nat. Rev. Chem. 2017; 1: 0077
  • 28 Chciuk TV, Flowers II RA. Science of. Synthesis Knowledge Updates. 2016. 2. 177
  • 29 Choquette KA, Flowers II RA, Comprehensive Organic Synthesis. Molander GA, Knochel P. Elsevier; Oxford 2014. 1. 278
  • 30 Procter DJ, Flowers II RA, Skrydstrup T. Organic Synthesis Using Samarium Diiodide: A Practical Guide. RSC; Cambridge, UK 2010
  • 31 Shabangi M, Flowers II RA. Tetrahedron Lett. 1997; 38: 1137
  • 32 Szostak M, Spain M, Procter DJ. J. Org. Chem. 2012; 77: 3049
  • 33 Imamoto T, Ono M. Chem. Lett. 1987; 16: 501
  • 34 Miller RS, Sealy JM, Shabangi M, Kuhlman ML, Fuchs JR, Flowers II RA. J. Am. Chem. Soc. 2000; 122: 7718
  • 35 Fuchs JR, Mitchell ML, Shabangi M, Flowers II RA. Tetrahedron Lett. 1997; 38: 8157
  • 36 Ramírez-Solís A, Bartulovich CO, Chciuk TV, Hernández-Cobos J, Saint-Martin H, Maron L, Anderson Jr WR, Li AM, Flowers II RA. J. Am. Chem. Soc. 2018; 140: 16731
  • 37 Hélion F, Lannou M.-I, Namy J.-L. Tetrahedron Lett. 2003; 44: 5507
  • 38 Ramírez-Solís A, Bartulovich CO, León-Pimentel CI, Saint-Martin H, Anderson Jr WR, Flowers II RA. Inorg. Chem. 2019; 58: 13927
  • 39 Rossmanith K. Monatsh. Chem. 1979; 110: 109
  • 40 Dahlén A, Hilmersson G, Knettle BW, Flowers II RA. J. Org. Chem. 2003; 68: 4870
  • 41 Dahlén A, Hilmersson G. Tetrahedron Lett. 2003; 44: 2661
  • 42 Chciuk TV, Flowers II RA. J. Am. Chem. Soc. 2015; 137: 11526
  • 43 Turlik A, Chen Y, Scruse AC, Newhouse TR. J. Am. Chem. Soc. 2019; 141: 8088
  • 44 Szostak M, Spain M, Procter DJ. Nat. Protoc. 2012; 7: 970
  • 45 Yokoyama Y, Oyamada S, Suzuki J, Maruyama S, Sakusabe T, Suzuki S. Synth. Commun. 2018; 48: 1025
  • 46 Zörb A, Brückner R. Eur. J. Org. Chem. 2010; 4785
  • 47 Szostak M, Spain M, Eberhart AJ, Procter DJ. J. Am. Chem. Soc. 2014; 136: 2268
  • 48 Szostak M, Spain M, Procter DJ. Org. Lett. 2012; 14: 840
  • 49 Szostak M, Spain M, Eberhart AJ, Procter DJ. J. Org. Chem. 2014; 79: 11988
  • 50 Szostak M, Spain M, Procter DJ. Chem. Commun. (Cambridge) 2011; 47: 10254
  • 51 Kagan HB, Namy J.-L, Girard P. Tetrahedron Suppl. 1981; 1: 175
  • 52 Curran DP, Xin G, Zhang W, Dowd P. Tetrahedron 1997; 53: 9023
  • 53 Choquette KA, Sadasivam DV, Flowers II RA. J. Am. Chem. Soc. 2010; 132: 17396
  • 54 Nishikawa K, Nakahara H, Shirokura Y, Nogata Y, Yoshimura E, Umezawa T, Okino T, Matsuda F. Org. Lett. 2010; 12: 904
  • 55 Fukuzawa S.-i, Tsuchimoto T. Synlett 1993; 803
  • 56 Iwasaki H, Eguchi T, Tsutsui N, Ohno H, Tanaka T. J. Org. Chem. 2008; 73: 7145
  • 57 Dahlén A, Petersson A, Hilmersson G. Org. Biomol. Chem. 2003; 1: 2423
  • 58 Rivkin A, González-López de Turiso F, Nagashima T, Curran DP. J. Org. Chem. 2004; 69: 3719
  • 59 Molander GA, Harring LS. J. Org. Chem. 1990; 55: 6171
  • 60 Cai L, Zhang K, Kwon O. J. Am. Chem. Soc. 2016; 138: 3298
  • 61 Molander GA, Brown GA, Storch de Gracia I. J. Org. Chem. 2002; 67: 3459
  • 62 Cheng S.-L, Jiang X.-L, Shi Y, Tian W.-S. Org. Lett. 2015; 17: 2346
  • 63 Molander GA, McKie JA. J. Org. Chem. 1992; 57: 3132
  • 64 Hölemann A, Reissig H.-U. Org. Lett. 2003; 5: 1463
  • 65 Sadasivam DV, Teprovich Jr JA, Procter DJ, Flowers II RA. Org. Lett. 2010; 12: 4140
  • 66 Huang H.-M, McDouall JJW, Procter DJ. Nat. Catal. 2019; 2: 211
  • 67 Zhang Y.-F, Mellah M. ACS Catal. 2017; 7: 8480
  • 68 Maity S, Flowers II RA. J. Am. Chem. Soc. 2019; 141: 3207
  • 69 Nomura R, Matsuno T, Endo T. J. Am. Chem. Soc. 1996; 118: 11666
  • 70 Corey EJ, Zheng GZ. Tetrahedron Lett. 1997; 38: 2045
  • 71 Aspinall HC, Greeves N, Valla C. Org. Lett. 2005; 7: 1919
  • 72 Orsini F, Lucci EM. Tetrahedron Lett. 2005; 46: 1909
  • 73 Hélion F, Namy J.-L. J. Org. Chem. 1999; 64: 2944
  • 74 Lannou M.-I, Hélion F, Namy J.-L. Tetrahedron 2003; 59: 10551
  • 75 Sun L, Sahloul K, Mellah M. ACS Catal. 2013; 3: 2568