Fensterbank, L. et al.: 2021 Science of Synthesis, 2020/5: Free Radicals: Fundamentals and Applications in Organic Synthesis 2 DOI: 10.1055/sos-SD-233-00170
Free Radicals: Fundamentals and Applications in Organic Synthesis 2

2.9 Electrochemical Organic Synthesis via Radical Species

More Information

Book

Editors: Fensterbank, L.; Ollivier, C.

Authors: Bartulovich, C. O.; Bolduc, T. G.; Chciuk, T. V.; Chemla, F.; Clark, K. F.; Cormier, M.; Das, A. ; Desage-El Murr, M. ; Dimitrova, D.; Fagnoni, M. ; Flowers, R. A. II; Fukuyama, T. ; Goddard, J.-P. ; Hessin, C.; Liu, Z.-Q. ; Lu, Y.; Mitsudo, K.; Murphy, J. A.; Pérez-Luna, A. ; Protti, S. ; Qin, T. ; Ravelli, D. ; Ren, Y.; Ryu, I. ; Sammis, G. M.; Sibi, M. P.; Subramaniann, H.; Suga, S.; Sumino, S. ; Thomson, B.; Yamago, S.; Zhou, M.

Title: Free Radicals: Fundamentals and Applications in Organic Synthesis 2

Print ISBN: 9783132435544; Online ISBN: 9783132435551; Book DOI: 10.1055/b000000086

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner (Editor-in-Chief), A.; Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

An electrochemical single-electron-transfer reaction is a promising method to generate reactive radical species in organic synthesis. One-electron oxidation of a neutral compound gives a radical cation, which usually breaks down into a radical and a cationic species; conversely, one-electron reduction of a neutral compound affords a radical anion, which forms a radical and an anionic species. The radical species generated in this way can be used for a variety of transformations. In this chapter, selected recent electrochemical transformations that involve electrogenerated radical species are collected and described.

 
  • 1 Radicals in Synthesis I: Methods and Mechanisms. Gansäuer A. Springer; Berlin 2006. 263.
  • 2 Radicals in Synthesis II: Complex Molecules. Gansäuer A. Springer; Berlin 2006. 264.
  • 3 Wang H, Gao X, Lv Z, Abdelilah T, Lei A. Chem. Rev. 2019; 119: 6769
  • 4 Moehle S, Zirbes M, Rodrigo E, Gieshoff T, Wiebe A, Waldvogel SR. Angew. Chem. Int. Ed. 2018; 57: 6018
  • 5 Jiang Y, Xu K, Zeng C. Chem. Rev. 2018; 118: 4485
  • 6 Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
  • 7 Rosen BR, Werner EW, OʼBrien AG, Baran PS. J. Am. Chem. Soc. 2014; 136: 5571
  • 8 Xu H.-C, Campbell JM, Moeller KD. J. Org. Chem. 2014; 79: 379
  • 9 Gieshoff T, Schollmeyer D, Waldvogel SR. Angew. Chem. Int. Ed. 2016; 55: 9437
  • 10 Gieshoff T, Kehl A, Schollmeyer D, Moeller KD, Waldvogel SR. J. Am. Chem. Soc. 2017; 139: 12317
  • 11 Zhu L, Xiong P, Mao Z.-Y, Wang Y.-H, Yan X, Lu X, Xu H.-C. Angew. Chem. Int. Ed. 2016; 55: 2226
  • 12 Hou Z.-W, Mao Z.-Y, Zhao H.-B, Melcamu YY, Lu X, Song J, Xu H.-C. Angew. Chem. Int. Ed. 2016; 55: 9168
  • 13 Keri RS, Chand K, Budagumpi S, Balappa Somappa S, Patil A, Nagaraja BM. Eur. J. Med. Chem. 2017; 138: 1002
  • 14 Ilardi EA, Vitaku E, Njardarson JT. J. Med. Chem. 2014; 57: 2832
  • 15 Koebel MR, Cooper A, Schmadeke G, Jeon S, Narayan M, Sirimulla S. J. Chem. Inf. Model. 2016; 56: 2298
  • 16 Beno BR, Yeung K.-S, Bartberger MD, Pennington LD, Meanwell NA. J. Med. Chem. 2015; 58: 4383
  • 17 Dikcal F, Ozturk T, Cinar ME. Org. Commun. 2017; 10: 56
  • 18 Li L, Zhao C, Wang H. Chem. Rec. 2016; 16: 797
  • 19 Takimiya K, Nakano M, Sugino H, Osaka I. Synth. Met. 2016; 217: 68
  • 20 Cinar ME, Ozturk T. Chem. Rev. 2015; 115: 3036
  • 21 Takimiya K, Osaka I, Mori T, Nakano M. Acc. Chem. Res. 2014; 47: 1493
  • 22 Qian P, Bi M, Su J, Zha Z, Wang Z. J. Org. Chem. 2016; 81: 4876
  • 23 Luo Y.-C, Pan X.-J, Yuan G.-Q. Tetrahedron 2015; 71: 2119
  • 24 Wen J, Shi W, Zhang F, Liu D, Tang S, Wang H, Lin X.-M, Lei A. Org. Lett. 2017; 19: 3131
  • 25 Jiang Y.-Y, Liang S, Zeng C.-C, Hu L.-M, Sun B.-G. Green Chem. 2016; 18: 6311
  • 26 Tanaka H, Kuroboshi M, Torii S, Organic Electrochemistry. Hammerich O, Speiser B. CRC Press; Boca Raton, FL 2016: 1267
  • 27 Schäfer H.-J. Top. Curr. Chem. 1990; 152: 91
  • 28 OʼBrien AG, Maruyama A, Inokuma Y, Fujita M, Baran PS, Blackmond DG. Angew. Chem. Int. Ed. 2014; 53: 11868
  • 29 Einaga Y. Bull. Chem. Soc. Jpn. 2018; 91: 1752
  • 30 Fierro S, Einaga Y. Top. Appl. Phys. 2015; 121: 295
  • 31 Waldvogel SR, Mentizi S, Kirste A. Top. Curr. Chem. 2012; 320: 1
  • 32 Sumi T, Saitoh T, Natsui K, Yamamoto T, Atobe M, Einaga Y, Nishiyama S. Angew. Chem. Int. Ed. 2012; 51: 5443
  • 33 Senboku H, Michinishi J, Hara S. Synlett 2011; 1567
  • 34 Mitsudo K, Nakagawa Y, Mizukawa J, Tanaka H, Akaba R, Okada T, Suga S. Electrochim. Acta 2012; 82: 444
  • 35 Heimann J, Schäfer HJ, Fröhlich R, Wibbeling B. Eur. J. Org. Chem. 2003; 2919
  • 36 Shimakoshi H, Luo Z, Inaba T, Hisaeda Y. Dalton Trans. 2016; 45: 10173
  • 37 Conant JB, Sloan AW. J. Am. Chem. Soc. 1923; 45: 2466
  • 38 Suga S, Suzuki S, Maruyama T, Yoshida J.-i. Bull. Chem. Soc. Jpn. 2004; 77: 1545
  • 39 Okajima M, Soga K, Nokami T, Suga S, Yoshida J.-i. Org. Lett. 2006; 8: 5005