Fensterbank, L. et al.: 2021 Science of Synthesis, 2020/5: Free Radicals: Fundamentals and Applications in Organic Synthesis 2 DOI: 10.1055/sos-SD-233-00202
Free Radicals: Fundamentals and Applications in Organic Synthesis 2

2.12 Asymmetric Catalysis of Radical Reactions

More Information

Book

Editors: Fensterbank, L.; Ollivier, C.

Authors: Bartulovich, C. O.; Bolduc, T. G.; Chciuk, T. V.; Chemla, F.; Clark, K. F.; Cormier, M.; Das, A. ; Desage-El Murr, M. ; Dimitrova, D.; Fagnoni, M. ; Flowers, R. A.; Fukuyama, T. ; Goddard, J.-P. ; Hessin, C.; Liu, Z.-Q. ; Lu, Y.; Mitsudo, K.; Murphy, J. A.; Pérez-Luna, A. ; Protti, S. ; Qin, T. ; Ravelli, D. ; Ren, Y.; Ryu, I. ; Sammis, G. M.; Sibi, M. P.; Subramaniann, H.; Suga, S.; Sumino, S. ; Thomson, B.; Yamago, S.; Zhou, M.

Title: Free Radicals: Fundamentals and Applications in Organic Synthesis 2

Print ISBN: 9783132435544; Online ISBN: 9783132435551; Book DOI: 10.1055/b000000086

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

Synthetic methodologies based on radical chemistry are efficient and powerful tools for the construction of carbon–carbon and carbon–heteroatom bonds. This chapter highlights the significance of asymmetric catalysis in free-radical reactions. Several asymmetric catalytic principles, ranging from early chiral Lewis acid and organocatalytic activation to recent photoredox and transition-metal-based asymmetric catalytic systems, are discussed.

 
  • 1 Porter NA, Giese B, Curran DP. Acc. Chem. Res. 1991; 24: 296
  • 2 Curran DP, Porter NA, Giese B. Stereochemistry of Radical Reactions. Wiley-VCH; Weinheim, Germany 1996
  • 3 General Aspects of the Chemistry of Radicals. Alfassi ZB. Wiley; New York 1999
  • 4 Landais Y. C. R. Chim. 2005; 8: 823
  • 5 Comprehensive Asymmetric Catalysis. Jacobsen EN, Pfaltz A, Yamamoto H. Springer; New York 1999. 1–3.
  • 7 Noyori R. Asymmetric Catalysis in Organic Synthesis. Wiley Interscience; New York 1994
  • 8 Zimmerman J, Sibi MP. Top. Curr. Chem. 2006; 263: 107
  • 9 Sibi MP, Porter NA. Acc. Chem. Res. 1999; 32: 163
  • 10 Miyabe H, Takemoto Y. Chem.–Eur. J. 2007; 13: 7280
  • 11 Rowlands GJ. Chem. N. Z. 2008; 72: 92
  • 12 Sibi MP, Manyem S, Zimmerman J. Chem. Rev. 2003; 103: 3263
  • 14 Urabe H, Yamashita K, Suzuki K, Kobayashi K, Sato F. J. Org. Chem. 1995; 60: 3576
  • 15 Wu JH, Radinov R, Porter NA. J. Am. Chem. Soc. 1995; 117: 11029
  • 16 Sibi MP, Asano Y, Sausker JB. Angew. Chem. Int. Ed. 2001; 40: 1293
  • 17 Sibi MP, Shay JJ, Ji J. Tetrahedron Lett. 1997; 38: 5955
  • 18 Lee S, Lim CJ, Kim S, Subramaniam R, Zimmerman J, Sibi MP. Org. Lett. 2006; 8: 4311
  • 19 Sibi MP, Ji J, Wu JH, Gürtler S, Porter NA. J. Am. Chem. Soc. 1996; 118: 9200
  • 20 Sibi MP, Ji J. J. Org. Chem. 1997; 62: 3800
  • 21 Sibi MP, Sausker JB. J. Am. Chem. Soc. 2002; 124: 984
  • 22 Sibi MP, Zimmerman J. J. Am. Chem. Soc. 2006; 128: 13346
  • 23 Zhao C, Sibi MP. Synlett 2017; 28: 2971
  • 24 Hajos ZG, Parrish DR. J. Org. Chem. 1974; 39: 1615
  • 25 Berkessel A, Gröger H. Asymmetric Organocatalysis: From Biomimetic Concepts to Applications in Asymmetric Synthesis. Wiley-VCH; Weinheim, Germany 2005
  • 26 Enantioselective Organocatalysis: Reactions and Experimental Procedures. Dalko PI. Wiley-VCH; Weinheim, Germany 2007
  • 27 Beeson TD, Mastracchio A, Hong J, Ashton K, MacMillan DWC. Science (Washington, D. C.) 2007; 316: 582
  • 28 Sibi MP, Hasegawa M. J. Am. Chem. Soc. 2007; 129: 4124
  • 29 Poulsen TB, Bernardi L, Bell M, Jørgensen KA. Angew. Chem. Int. Ed. 2006; 45: 6551
  • 30 Chieffi A, Kamikawa K, Ahman J, Fox JM, Buchwald SL. Org. Lett. 2001; 3: 1897
  • 31 Kim H, MacMillan DWC. J. Am. Chem. Soc. 2008; 130: 398
  • 32 Akiyama T, Mori K. Chem. Rev. 2015; 115: 9277
  • 33 James T, van Gemmeren M, List B. Chem. Rev. 2015; 115: 9388
  • 34 Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2014; 114: 9047
  • 35 Lee S, Kim S. Tetrahedron Lett. 2009; 50: 3345
  • 36 Rono LJ, Yayla HG, Wang DY, Armstrong MF, Knowles RR. J. Am. Chem. Soc. 2013; 135: 17735
  • 37 Yu D.-G, Li B.-J, Shi Z.-J. Acc. Chem. Res. 2010; 43: 1486
  • 38 Li B.-J, Yu D.-G, Sun C.-L, Shi Z.-J. Chem.–Eur. J. 2011; 17: 1728
  • 39 Rosen BM, Quasdorf KW, Wilson DA, Zhang N, Resmerita A.-M, Garg NK, Percec V. Chem. Rev. 2011; 111: 1346
  • 40 Tasker SZ, Standley EA, Jamison TF. Nature (London) 2014; 509: 299
  • 41 Fischer C, Fu GC. J. Am. Chem. Soc. 2005; 127: 4594
  • 42 Choi J, Martín-Gago P, Fu GC. J. Am. Chem. Soc. 2014; 136: 12161
  • 43 Liang Y, Fu GC. J. Am. Chem. Soc. 2015; 137: 9523
  • 44 Choi J, Fu GC. J. Am. Chem. Soc. 2012; 134: 9102
  • 45 Schmidt J, Choi J, Liu AT, Slusarczyk M, Fu GC. Science (Washington, D. C.) 2016; 354: 1265
  • 46 Do H.-Q, Chandrashekar ERR, Fu GC. J. Am. Chem. Soc. 2013; 135: 16288
  • 47 Son S, Fu GC. J. Am. Chem. Soc. 2008; 130: 2756
  • 48 Schley ND, Fu GC. J. Am. Chem. Soc. 2014; 136: 16588
  • 49 Dai X, Strotman NA, Fu GC. J. Am. Chem. Soc. 2008; 130: 3302
  • 50 Lundin PM, Esquivias J, Fu GC. Angew. Chem. Int. Ed. 2009; 48: 154
  • 51 Lundin PM, Fu GC. J. Am. Chem. Soc. 2010; 132: 11027
  • 52 Lou S, Fu GC. J. Am. Chem. Soc. 2010; 132: 5010
  • 53 Lou S, Fu GC. J. Am. Chem. Soc. 2010; 132: 1264
  • 54 Cherney AH, Kadunce NT, Reisman SE. J. Am. Chem. Soc. 2013; 135: 7442
  • 55 Cherney AH, Reisman SE. J. Am. Chem. Soc. 2014; 136: 14365
  • 56 Poremba KE, Kadunce NT, Suzuki N, Cherney AH, Reisman SE. J. Am. Chem. Soc. 2017; 139: 5684
  • 57 Scheffold R, Dike M, Dike S, Herold T, Walder L. J. Am. Chem. Soc. 1980; 102: 3642
  • 58 Xu X, Lu H, Ruppel JV, Cui X, Lopez de Mesa S, Wojtas L, Zhang XP. J. Am. Chem. Soc. 2011; 133: 15292
  • 59 Xu X, Zhu S, Cui X, Wojtas L, Zhang XP. Angew. Chem. Int. Ed. 2013; 52: 11857
  • 60 Kozlowski MC, In: Copper-Oxygen Chemistry Karlin KD, Itoh S, Rokita S. Wiley Hoboken, NJ 2011; 361
  • 61 Adachi S, Moorthy R, Sibi MP, In: Copper-Catalyzed Asymmetric Synthesis Alexakis A, Krause N, Woodward S. Wiley-VCH Weinheim, Germany 2014; 283
  • 62 Trammell R, Rajabimoghadam K, Garcia-Bosch I. Chem. Rev. 2019; 119: 2954
  • 63 Wang F, Chen P, Liu G. Acc. Chem. Res. 2018; 51: 2036
  • 64 Li Z.-L, Fang G.-C, Gu Q.-S, Liu X.-Y. Chem. Soc. Rev. 2020; 49: 32
  • 65 Gu Q.-S, Li Z.-L, Liu X.-Y. Acc. Chem. Res. 2020; 53: 170
  • 66 Zhu R, Buchwald SL. Angew. Chem. Int. Ed. 2013; 52: 12655
  • 67 Zhu R, Buchwald SL. J. Am. Chem. Soc. 2015; 137: 8069
  • 68 Lin J.-S, Dong X.-Y, Li T.-T, Jiang N.-C, Tan B, Liu X.-Y. J. Am. Chem. Soc. 2016; 138: 9357
  • 69 Zhang W, Wang F, McCann SD, Wang D, Chen P, Stahl SS, Liu G. Science (Washington, D. C.) 2016; 353: 1014
  • 70 Ramon DJ, Yus M. Chem. Rev. 2006; 106: 2126
  • 71 Gansäuer A, Bluhm H. Chem. Rev. 2000; 100: 2771
  • 72 McCallum T, Wu X, Lin S. J. Org. Chem. 2019; 84: 14369
  • 73 Justicia J, Rosales A, Buñuel E, Oller-López JL, Valdivia M, Haïdour A, Oltra JE, Barrero AF, Cárdenas DJ, Cuerva JM. Chem.–Eur. J. 2004; 10: 1778
  • 74 Gansäuer A, Justicia J, Rosales A, Worgull D, Rinker B, Cuerva JM, Oltra JE. Eur. J. Org. Chem. 2006; 4115
  • 75 Justicia J, Álvarez de Cienfuegos L, Campaña AG, Miguel D, Jakoby V, Gansäuer A, Cuerva JM. Chem. Soc. Rev. 2011; 40: 3525
  • 76 Jiménez T, Morcillo SP, Martín-Lasanta A, Collado-Sanz D, Cárdenas DJ, Gansäuer A, Justicia J, Cuerva JM. Chem.–Eur. J. 2012; 18: 12825
  • 77 Morcillo SP, Miguel D, Campaña AG, Álvarez de Cienfuegos L, Justicia J, Cuerva JM. Org. Chem. Front. 2014; 1: 15
  • 78 Clive DLJ, Magnuson SR. Tetrahedron Lett. 1995; 36: 15
  • 79 Clive DLJ, Magnuson SR, Manning HW, Mayhew DL. J. Org. Chem. 1996; 61: 2095
  • 80 Yamaoka M, Nakazaki A, Kobayashi S. Tetrahedron Lett. 2009; 50: 6764
  • 81 Cha JY, Yeoman JTS, Reisman SE. J. Am. Chem. Soc. 2011; 133: 14964
  • 82 Nugent WA, RajanBabu TV. J. Am. Chem. Soc. 1988; 110: 8561
  • 83 RajanBabu TV, Nugent WA. J. Am. Chem. Soc. 1994; 116: 986
  • 84 Gansäuer A, Lauterbach T, Bluhm H, Noltemeyer M. Angew. Chem. Int. Ed. 1999; 38: 2909
  • 85 Gansäuer A, Bluhm H, Lauterbach T. Adv. Synth. Catal. 2001; 343: 785
  • 86 Gansäuer A, Fan C.-A, Keller F, Keil J. J. Am. Chem. Soc. 2007; 129: 3484
  • 87 Gansäuer A, Fan C.-A, Keller F, Karbaum P. Chem.–Eur. J. 2007; 13: 8084
  • 88 Gansäuer A, Shi L, Otte M. J. Am. Chem. Soc. 2010; 132: 11858
  • 89 Cesarotti E, Kagan HB, Goddard R, Krueger C. J. Organomet. Chem. 1978; 162: 297
  • 90 Hao W, Harenberg JH, Wu X, MacMillan SN, Lin S. J. Am. Chem. Soc. 2018; 140: 3514
  • 91 Douglas JJ, Sevrin MJ, Stephenson CRJ. Org. Process Res. Dev. 2016; 20: 1134
  • 92 Lang X, Zhao J, Chen X. Chem. Soc. Rev. 2016; 45: 3026
  • 93 Nicewicz DA, Nguyen TM. ACS Catal. 2014; 4: 355
  • 94 Prier CK, Rankic DA, MacMillan DWC. Chem. Rev. 2013; 113: 5322
  • 95 Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
  • 96 Shaw MH, Twilton J, MacMillan DWC. J. Org. Chem. 2016; 81: 6898
  • 97 Huo H, Shen X, Wang C, Zhang L, Röse P, Chen L.-A, Harms K, Marsch M, Hilt G, Meggers E. Nature (London) 2014; 515: 100
  • 98 Huo H, Wang C, Harms K, Meggers E. J. Am. Chem. Soc. 2015; 137: 9551
  • 99 Huo H, Huang X, Shen X, Harms K, Meggers E. Synlett 2016; 27: 749
  • 100 Shen X, Harms K, Marsch M, Meggers E. Chem.–Eur. J. 2016; 22: 9102
  • 101 Fagnoni M, Dondi D, Ravelli D, Albini A. Chem. Rev. 2007; 107: 2725
  • 102 Ravelli D, Dondi D, Fagnoni M, Albini A. Chem. Soc. Rev. 2009; 38: 1999
  • 103 Ravelli D, Fagnoni M, Albini A. Chem. Soc. Rev. 2013; 42: 97
  • 104 Marin ML, Santos-Juanes L, Arques A, Amat AM, Miranda MA. Chem. Rev. 2012; 112: 1710
  • 105 Fukuzumi S, Ohkubo K. Org. Biomol. Chem. 2014; 12: 6059
  • 106 Hari DP, König B. Chem. Commun. (Cambridge) 2014; 50: 6688
  • 107 Neumann M, Füldner S, König B, Zeitler K. Angew. Chem. Int. Ed. 2011; 50: 951
  • 108 Woźniak Ł, Murphy JJ, Melchiorre P. J. Am. Chem. Soc. 2015; 137: 5678
  • 109 Bugaut X, Glorius F. Chem. Soc. Rev. 2012; 41: 3511
  • 110 Vora HU, Rovis T. Aldrichimica Acta 2011; 44: 1
  • 111 Moore JL, Rovis T. Top. Curr. Chem. 2010; 291: 77
  • 112 Guin J, De Sarkar S, Grimme S, Studer A. Angew. Chem. Int. Ed. 2008; 47: 8727
  • 113 White NA, Rovis T. J. Am. Chem. Soc. 2014; 136: 14674