2.12 Asymmetric Catalysis of Radical Reactions
Book
Editors: Fensterbank, L.; Ollivier, C.
Title: Free Radicals: Fundamentals and Applications in Organic Synthesis 2
Print ISBN: 9783132435544; Online ISBN: 9783132435551; Book DOI: 10.1055/b000000086
1st edition © 2021. Thieme. All rights reserved.
Georg Thieme Verlag KG, Stuttgart
Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry
Science of Synthesis Reference Libraries
Parent publication
Title: Science of Synthesis
DOI: 10.1055/b-00000101
Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.
Type: Multivolume Edition
Abstract
Synthetic methodologies based on radical chemistry are efficient and powerful tools for the construction of carbon–carbon and carbon–heteroatom bonds. This chapter highlights the significance of asymmetric catalysis in free-radical reactions. Several asymmetric catalytic principles, ranging from early chiral Lewis acid and organocatalytic activation to recent photoredox and transition-metal-based asymmetric catalytic systems, are discussed.
Key words
asymmetric catalysis - radical reactions - chiral Lewis acids - hydrogen-atom transfer - chiral aluminum Lewis acids - chiral Brønsted acids - organocatalysis - photoredox catalysis - transition-metal catalysis - single-electron transfer - chiral porphyrins - chiral N-heterocyclic carbenes- 2 Curran DP, Porter NA, Giese B. Stereochemistry of Radical Reactions. Wiley-VCH; Weinheim, Germany 1996
- 5 Comprehensive Asymmetric Catalysis. Jacobsen EN, Pfaltz A, Yamamoto H. Springer; New York 1999. 1–3.
- 25 Berkessel A, Gröger H. Asymmetric Organocatalysis: From Biomimetic Concepts to Applications in Asymmetric Synthesis. Wiley-VCH; Weinheim, Germany 2005
- 26 Enantioselective Organocatalysis: Reactions and Experimental Procedures. Dalko PI. Wiley-VCH; Weinheim, Germany 2007
- 27 Beeson TD, Mastracchio A, Hong J, Ashton K, MacMillan DWC. Science (Washington, D. C.) 2007; 316: 582
- 39 Rosen BM, Quasdorf KW, Wilson DA, Zhang N, Resmerita A.-M, Garg NK, Percec V. Chem. Rev. 2011; 111: 1346
- 58 Xu X, Lu H, Ruppel JV, Cui X, Lopez de Mesa S, Wojtas L, Zhang XP. J. Am. Chem. Soc. 2011; 133: 15292
- 60 Kozlowski MC, In: Copper-Oxygen Chemistry Karlin KD, Itoh S, Rokita S. Wiley Hoboken, NJ 2011; 361
- 61 Adachi S, Moorthy R, Sibi MP, In: Copper-Catalyzed Asymmetric Synthesis Alexakis A, Krause N, Woodward S. Wiley-VCH Weinheim, Germany 2014; 283
- 69 Zhang W, Wang F, McCann SD, Wang D, Chen P, Stahl SS, Liu G. Science (Washington, D. C.) 2016; 353: 1014
- 73 Justicia J, Rosales A, Buñuel E, Oller-López JL, Valdivia M, Haïdour A, Oltra JE, Barrero AF, Cárdenas DJ, Cuerva JM. Chem.–Eur. J. 2004; 10: 1778
- 74 Gansäuer A, Justicia J, Rosales A, Worgull D, Rinker B, Cuerva JM, Oltra JE. Eur. J. Org. Chem. 2006; 4115
- 75 Justicia J, Álvarez de Cienfuegos L, Campaña AG, Miguel D, Jakoby V, Gansäuer A, Cuerva JM. Chem. Soc. Rev. 2011; 40: 3525
- 76 Jiménez T, Morcillo SP, Martín-Lasanta A, Collado-Sanz D, Cárdenas DJ, Gansäuer A, Justicia J, Cuerva JM. Chem.–Eur. J. 2012; 18: 12825
- 77 Morcillo SP, Miguel D, Campaña AG, Álvarez de Cienfuegos L, Justicia J, Cuerva JM. Org. Chem. Front. 2014; 1: 15