Fensterbank, L. et al.: 2021 Science of Synthesis, 2020/4: Free Radicals: Fundamentals and Applications in Organic Synthesis 1 DOI: 10.1055/sos-SD-234-00002
Free Radicals: Fundamentals and Applications in Organic Synthesis 1

1.1 Improving Radical Persistence through Confinement: A Survey

More Information

Book

Editors: Fensterbank, L.; Ollivier, C.

Authors: André-Joyaux, E.; Bellanger, C.; Bertrand, M. P.; Besson, E. ; Bietti, M.; Braïda, B.; Cahoon, S. B.; Casano, G.; Chelli, S.; Chen, Y.; Chiba, S. ; Dénès, F. ; Derat, E.; Gastaldi, S. ; Gnägi, L.; Kaga, A.; Lakhdar, S. ; Liu, D.; Lu, X.-L.; Maestri, G. ; Meléndez, C.; Ouari, O. ; Renaud, P. ; Rovis, T.; Serafino, A.; Shirakawa, E. ; Soulard, V.; Treacy, S. M.; Wang, B.; Wang, Y.-F.; Yoon, T. P.; Yorimitsu, H.; Zhang, F.-L.; Zhang, J.; Zhang, X.

Title: Free Radicals: Fundamentals and Applications in Organic Synthesis 1

Print ISBN: 9783132435520; Online ISBN: 9783132435537; Book DOI: 10.1055/b000000087

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

Most organic radical species are transient and were long considered to be beyond control. Tremendous progress in the knowledge and understanding of their reactivity has enabled their use as standard intermediates in organic synthesis. In this review, strategies implemented to increase radical lifetimes, without modifying fundamentally their structural features, are presented. A wide array of systems has been designed that allow modulation of the level of confinement constraints. The ability of these systems to increase radical lifetime has now reached the point where a transient radical can become persistent, which opens up many new prospects for future applications.

 
  • 2 Luo Y.-R In: Comprehensive Handbook of Chemical Bond Energies CRC Press Boca Raton, FL, USA 2007;
  • 5 Hioe J, Zipse H, In: Encyclopedia of Radicals in Chemistry, Biology and Materials Chatgilialoglu C, Studer A. Wiley-Blackwell Oxford, UK 2012; 1. 449
  • 7 Tumanskii B, Karni M, Apeloig Y, In: Encyclopedia of Radicals in Chemistry, Biology and Materials Chatgilialoglu C, Studer A. Wiley-Blackwell Oxford, UK 2012; 4. 2117
  • 9 Karoui H, Le Moigne F, Ouari O, Tordo P, In: Stable Radicals: Fundamentals and Applied Aspects of Odd-Electron Compounds Hicks RG. Wiley Chichester, UK 2010; 173
  • 17 Pan X, Bao X, In: Nanomaterials in Catalysis Serp P, Philippot K. Wiley-VCH Weinheim, Germany 2013; 415
  • 33 Vibert F, Marque SRA, Bloch E, Queyroy S, Bertrand MP, Gastaldi S, Besson E. Chem. Sci. 2014; 5: 4716 material modified from original article published by The Royal Society of Chemistry
  • 40 Arčon D, Pregelj M, Cevc P, Rotas G, Pagona G, Tagmatarchis N, Ewels C. Chem. Commun. (Cambridge) 2007; 3386
  • 46 Lucarini M, Roberts BP. Chem. Commun. (Cambridge) 1996; 1577
  • 49 Jeon WS, Kim H.-J, Lee C, Kim K. Chem. Commun. (Cambridge) 2002; 1828
  • 50 Fahrenbach AC, Sampath S, Late DJ, Barnes JC, Kleinman SL, Valley N, Hartlieb KJ, Liu Z, Dravid VP, Schatz GC, Van Duyne RP, Stoddart JF. ACS Nano 2012; 6: 9964
  • 58 Jiao T, Cai K, Nelson JN, Jiao Y, Qiu Y, Wu G, Zhou J, Cheng C, Shen D, Feng Y, Liu Z, Wasielewski MR, Stoddart JF, Li H. J. Am. Chem. Soc. 2019; 141: 16915
  • 61 Kolek M, Otteny F, Schmidt P, Mück-Lichtenfeld C, Einholz C, Becking J, Schleicher E, Winter M, Bieker P, Esser B. Energy Environ. Sci. 2017; 10: 2334
  • 66 DeHaven BA, Tokarski III JT, Korous AA, Mentink-Vigier F, Makris TM, Brugh AM, Forbes MDE, van Tol J, Bowers CR, Shimizu LS. Chem.–Eur. J. 2017; 23: 8315