1.1 Improving Radical Persistence through Confinement: A Survey
Book
Editors: Fensterbank, L.; Ollivier, C.
Title: Free Radicals: Fundamentals and Applications in Organic Synthesis 1
Print ISBN: 9783132435520; Online ISBN: 9783132435537; Book DOI: 10.1055/b000000087
1st edition © 2021. Thieme. All rights reserved.
Georg Thieme Verlag KG, Stuttgart
Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry
Science of Synthesis Reference Libraries
Parent publication
Title: Science of Synthesis
DOI: 10.1055/b-00000101
Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.
Type: Multivolume Edition
Abstract
![](https://www.thieme-connect.de/media/10.1055-b000000087/thumbnails/a_220fob.jpg)
Most organic radical species are transient and were long considered to be beyond control. Tremendous progress in the knowledge and understanding of their reactivity has enabled their use as standard intermediates in organic synthesis. In this review, strategies implemented to increase radical lifetimes, without modifying fundamentally their structural features, are presented. A wide array of systems has been designed that allow modulation of the level of confinement constraints. The ability of these systems to increase radical lifetime has now reached the point where a transient radical can become persistent, which opens up many new prospects for future applications.
Key words
transient radicals - persistent radicals - confinement - supramolecular interactions - covalent organic frameworks - metal–organic frameworks - cucurbiturils - cyclodextrins - cyclophanes - zeolites - mesoporous silicas - periodic mesoporous organic silicas - layered structures - lamellar polysilsesquioxanes - single-walled carbon nanotubes - self-assembled systems- 5 Hioe J, Zipse H, In: Encyclopedia of Radicals in Chemistry, Biology and Materials Chatgilialoglu C, Studer A. Wiley-Blackwell Oxford, UK 2012; 1. 449
- 7 Tumanskii B, Karni M, Apeloig Y, In: Encyclopedia of Radicals in Chemistry, Biology and Materials Chatgilialoglu C, Studer A. Wiley-Blackwell Oxford, UK 2012; 4. 2117
- 9 Karoui H, Le Moigne F, Ouari O, Tordo P, In: Stable Radicals: Fundamentals and Applied Aspects of Odd-Electron Compounds Hicks RG. Wiley Chichester, UK 2010; 173
- 13 Turro NJ, Lei X.-G, Jockusch S, Li W, Liu Z, Abrams L, Ottaviani MF. J. Org. Chem. 2002; 67: 2606
- 17 Pan X, Bao X, In: Nanomaterials in Catalysis Serp P, Philippot K. Wiley-VCH Weinheim, Germany 2013; 415
- 19 Ruan X, Sun Y, Du W, Tang Y, Liu Q, Zhang Z, Doherty W, Frost RL, Qian G, Tsang DCW. Bioresour. Technol. 2019; 281: 457
- 20 Nwosu UG, Roy A, dela Cruz ALN, Dellinger B, Cook R. Environ. Sci.: Processes Impacts 2016; 18: 42
- 26 Moscatelli A, Liu Z, Lei X, Dyer J, Abrams L, Ottaviani MF, Turro NJ. J. Am. Chem. Soc. 2008; 130: 11344
- 31 Morkin TL, Turro NJ, Kleinman MH, Brindle CS, Kramer WH, Gould IR. J. Am. Chem. Soc. 2003; 125: 14917
- 33 Vibert F, Marque SRA, Bloch E, Queyroy S, Bertrand MP, Gastaldi S, Besson E. Chem. Sci. 2014; 5: 4716 material modified from original article published by The Royal Society of Chemistry
- 35 Vibert F, Marque SRA, Bloch E, Queyroy S, Bertrand MP, Gastaldi S, Besson E. J. Phys. Chem. C 2015; 119: 5434
- 37 Dol C, Gerbaud G, Guigliarelli B, Bloch E, Gastaldi S, Besson E. Phys. Chem. Chem. Phys. 2019; 21: 16337
- 40 Arčon D, Pregelj M, Cevc P, Rotas G, Pagona G, Tagmatarchis N, Ewels C. Chem. Commun. (Cambridge) 2007; 3386
- 41 Fülöp F, Rockenbauer A, Simon F, Pekker S, Korecz L, Garaj S, Jánossy A. Chem. Phys. Lett. 2001; 334: 233
- 42 Pagona G, Rotas G, Khlobystov AN, Chamberlain TW, Porfyrakis K, Tagmatarchis N. J. Am. Chem. Soc. 2008; 130: 6062
- 44 Simon F, Kuzmany H, Fülöp F, Jánossy A, Bernardi J, Hauke F, Hirsch A. Phys. Status Solidi B 2006; 243: 3263
- 50 Fahrenbach AC, Sampath S, Late DJ, Barnes JC, Kleinman SL, Valley N, Hartlieb KJ, Liu Z, Dravid VP, Schatz GC, Van Duyne RP, Stoddart JF. ACS Nano 2012; 6: 9964
- 51 Lipke MC, Cheng T, Wu Y, Arslan H, Xiao H, Wasielewski MR, Goddard III WA, Stoddart JF. J. Am. Chem. Soc. 2017; 139: 3986
- 52 Stergiou A, Rio J, Griwatz JH, Arčon D, Wegner HA, Ewels CP, Tagmatarchis N. Angew. Chem. Int. Ed. 2019; 58: 17745
- 58 Jiao T, Cai K, Nelson JN, Jiao Y, Qiu Y, Wu G, Zhou J, Cheng C, Shen D, Feng Y, Liu Z, Wasielewski MR, Stoddart JF, Li H. J. Am. Chem. Soc. 2019; 141: 16915
- 60 Wu S, Wang W, Li M, Cao L, Lyu F, Yang M, Wang Z, Shi Y, Nan B, Yu S, Sun Z, Liu Y, Lu Z. Nat. Commun. 2016; 7: 13318
- 61 Kolek M, Otteny F, Schmidt P, Mück-Lichtenfeld C, Einholz C, Becking J, Schleicher E, Winter M, Bieker P, Esser B. Energy Environ. Sci. 2017; 10: 2334
- 62 Gu S, Wu S, Cao L, Li M, Qin N, Zhu J, Wang Z, Li Y, Li Z, Chen J, Lu Z. J. Am. Chem. Soc. 2019; 141: 9623
- 63 Sindt AJ, DeHaven BA, McEachern Jr DF, Dissanayake DMMM, Smith MD, Vannucci AK, Shimizu LS. Chem. Sci. 2019; 10: 2670
- 64 Huo G.-F, Shi X, Tu Q, Hu Y.-X, Wu G.-Y, Yin G.-Q, Li X, Xu L, Ding H.-M, Yang H.-B. J. Am. Chem. Soc. 2019; 141: 16014
- 65 DeHaven BA, Goodlett DW, Sindt AJ, Noll N, De Vetta M, Smith MD, Martin CR, González L, Shimizu LS. J. Am. Chem. Soc. 2018; 140: 13064