Ackermann, L. : 2022 Science of Synthesis, 2021/5: Electrochemistry in Organic Synthesis DOI: 10.1055/sos-SD-236-00108
Electrochemistry in Organic Synthesis

5 Metal-Catalyzed C—H Activation

More Information

Book

Editor: Ackermann, L.

Authors: Brown, R. C. D. ; Enders, P.; Fang, P.; Folgueiras-Amador, A. A. ; Francke, R. ; Galczynski, J.; Gosmini, C. ; Hodgson, J. W.; Hou, Z.-W.; Huang, H.; Huang, Z.; Inagi, S. ; Kuciński, K. ; Kuriyama, M. ; Lam, K. ; Lambert, T. H.; Leech, M. C. ; Lennox, A. J. J. ; Lin, Z.; Little, R. D.; Massignan, L.; Mei, T.-S.; Meyer, T. H.; Moeller, K. D. ; Onomura, O. ; Prudlik, A.; Ruan, Z. ; Scheremetjew, A. ; Schiltz, P.; Selt, M.; Villani, E. ; Waldvogel, S. R. ; Wang, Z.-H.; Wu, T.; Xing, Y.-K.; Xu, H.-C. ; Yamamoto, K.

Title: Electrochemistry in Organic Synthesis

Print ISBN: 9783132442122; Online ISBN: 9783132442146; Book DOI: 10.1055/b000000126

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

Synthetic organic electrochemistry is currently experiencing a renaissance, the merger of electrochemistry with transition-metal-catalyzed C—H activation would provide not only an environmentally friendly approach, but also offer new opportunities that conventional transition-metal catalysis may not have achieved. In this chapter, we summarize the recent progress made in catalytic C—H activation reactions using organometallic electrochemistry, including C—C, C—O, C—N, C—halogen, and C—P bond-forming reactions.

 
  • 1 Gandeepan P, Ackermann L. Chem 2018; 4: 199
  • 2 He J, Wasa M, Chan KSL, Shao Q, Yu J.-Q. Chem. Rev 2017; 117: 8754
  • 3 Ye B, Cramer N. Acc. Chem. Res 2015; 48: 1308
  • 4 Hartwig JF. Chem. Soc. Rev 2011; 40: 1992
  • 5 Lyons TW, Sanford MS. Chem. Rev 2010; 110: 1147
  • 6 Daugulis O, Do H.-Q, Shabashov D. Acc. Chem. Res 2009; 42: 1074
  • 7 Jutand A. Chem. Rev 2008; 108: 2300
  • 8 Steckhan E. Top. Curr. Chem 1987; 142: 1
  • 9 Fultz ML, Durst RA. Anal. Chim. Acta 1982; 140: 1
  • 10 Engle KM, Mei T.-S, Wang X, Yu J.-Q. Angew. Chem. Int. Ed 2011; 50: 1478
  • 11 He G, Lu G, Guo Z, Liu P, Chen G. Nature Chem 2016; 8: 1131
  • 12 Park H, Verma P, Hong K, Yu J.-Q. Nature Chem 2018; 10: 755
  • 13 Wang F, Stahl SS. Acc. Chem. Res 2020; 53: 561
  • 14 Gensch T, James MJ, Dalton T, Glorius F. Angew. Chem. Int. Ed 2018; 57: 2296
  • 15 Wang X.-Y, Xu X.-T, Wang Z.-H, Fang P, Mei T.-S. Chin. J. Org. Chem 2020; 40: 3738
  • 16 Siu JC, Fu N, Lin S. Acc. Chem. Res 2020; 53: 547
  • 17 Jing Q, Moeller KD. Acc. Chem. Res 2020; 53: 135
  • 18 Kingston C, Palkowitz MD, Takahira Y, Vantourout JC, Peters BK, Kawamata Y, Baran PS. Acc. Chem. Res 2020; 53: 72
  • 19 Röckl JL, Pollok D, Franke R, Waldvogel SR. Acc. Chem. Res 2020; 53: 45
  • 20 Xiong P, Xu H.-C. Acc. Chem. Res 2019; 52: 3339
  • 21 Yuan Y, Lei A. Acc. Chem. Res 2019; 52: 3309
  • 22 Jiang Y, Xu K, Zeng C. Chem. Rev 2018; 118: 4485
  • 23 Yan M, Kawamata Y, Baran PS. Chem. Rev 2017; 117: 13230
  • 24 Horn EJ, Rosen BR, Baran PS. ACS Cent. Sci 2016; 2: 302
  • 25 Jiao K.-J, Xing Y.-K, Yang Q.-L, Qiu H, Mei T.-S. Acc. Chem. Res 2020; 53: 300
  • 26 Ackermann L. Acc. Chem. Res 2020; 53: 84
  • 27 Amatore C, Cammoun C, Jutand A. Adv. Synth. Catal 2007; 349: 292
  • 28 Dudkina YB, Mikhaylov DY, Gryaznova TV, Sinyashin OG, Vicic DA, Budnikova YH. Eur. J. Org. Chem 2012; 2114
  • 29 Saito F, Aiso H, Kochi T, Kakiuchi F. Organometallics 2014; 33: 6704
  • 30 Ma C, Zhao C.-Q, Li Y.-Q, Zhang L.-P, Xu X.-T, Zhang K, Mei T.-S. Chem. Commun. (Cambridge) 2017; 53: 12189
  • 31 Yang Q.-L, Li C.-Z, Zhang L.-W, Li Y.-Y, Tong X, Wu X.-Y, Mei T.-S. Organometallics 2019; 38: 1208
  • 32 Dhawa U, Tian C, Wdowik T, Oliveira JCA, Hao J, Ackermann L. Angew. Chem. Int. Ed 2020; 59: 13451
  • 33 Dhawa U, Tian C, Li W, Ackermann L. ACS Catal 2020; 10: 6457
  • 34 Zeng L, Li H, Tang S, Gao X, Deng Y, Zhang G, Pao C.-W, Chen J.-L, Lee J.-F, Lei A. ACS Catal 2018; 8: 5448
  • 35 Sau SC, Mei R, Struwe J, Ackermann L. ChemSusChem 2019; 12: 3023
  • 36 Chen J, Jin L, Zhou J, Jiang X, Yu C. Tetrahedron Lett 2019; 60: 2054
  • 37 Tian C, Massignan L, Meyer TH, Ackermann L. Angew. Chem. Int. Ed 2018; 57: 2383
  • 38 Tang S, Wang D, Liu Y, Zeng L, Lei A. Nat. Commun 2018; 9: 798
  • 39 Mei R, Sauermann N, Oliveira JCA, Ackermann L. J. Am. Chem. Soc 2018; 140: 7913
  • 40 Mei R, Ma W, Zhang Y, Guo X, Ackermann L. Org. Lett 2019; 21: 6534
  • 41 Mei R, Fang X, He L, Sun J, Zou L, Ma W, Ackermann L. Chem. Commun. (Cambridge) 2020; 56: 1393
  • 42 Cao Y, Yuan Y, Lin Y, Jiang X, Weng Y, Wang T, Bu F, Zeng L, Lei A. Green Chem 2020; 22: 1548
  • 43 Samanta RC, Struwe J, Ackermann L. Angew. Chem. Int. Ed 2020; 59: 14154
  • 44 Qiu Y, Tian C, Massignan L, Rogge T, Ackermann L. Angew. Chem. Int. Ed 2018; 57: 5818
  • 45 Xu F, Li Y.-J, Huang C, Xu H.-C. ACS Catal 2018; 8: 3820
  • 46 Mei R, Koeller J, Ackermann L. Chem. Commun. (Cambridge) 2018; 54: 12879
  • 47 Yang L, Steinbock R, Scheremetjew A, Kuniyil R, Finger LH, Messinis AM, Ackermann L. Angew. Chem. Int. Ed 2020; 59: 11130
  • 48 Luo M.-J, Hu M, Song R.-J, He D.-L, Li J.-H. Chem. Commun. (Cambridge) 2019; 55: 1124
  • 49 Luo M.-J, Zhang T.-T, Cai F.-J, Li J.-H, He D.-L. Chem. Commun. (Cambridge) 2019; 55: 7251
  • 50 Wang Z.-Q, Hou C, Zhong Y.-F, Lu Y.-X, Mo Z.-Y, Pan Y.-M, Tang H.-T. Org. Lett 2019; 21: 9841
  • 51 Qiu Y, Kong W.-J, Struwe J, Sauermann N, Rogge T, Scheremetjew A, Ackermann L. Angew. Chem. Int. Ed 2018; 57: 5828
  • 52 Zhang Y, Struwe J, Ackermann L. Angew. Chem. Int. Ed 2020; 59: 15076
  • 53 Kong W.-J, Finger LH, Oliveira JCA, Ackermann L. Angew. Chem. Int. Ed 2019; 58: 6342
  • 54 Kong W.-J, Finger LH, Messinis AM, Kuniyil R, Oliveira JCA, Ackermann L. J. Am. Chem. Soc 2019; 141: 17198
  • 55 Kong W.-J, Shen Z, Finger LH, Ackermann L. Angew. Chem. Int. Ed 2020; 59: 5551
  • 56 Xing Y.-K, Chen X.-R, Yang Q.-L, Zhang S.-Q, Guo H.-M, Hong X, Mei T.-S. Nat. Commun 2021; 12: 930
  • 57 Qiu Y, Stangier M, Meyer TH, Oliveira JCA, Ackermann L. Angew. Chem. Int. Ed 2018; 57: 14179
  • 58 Yang Q.-L, Xing Y.-K, Wang X.-Y, Ma H.-X, Weng X.-J, Yang X, Guo H.-M, Mei T.-S. J. Am. Chem. Soc 2019; 141: 18970
  • 59 Yang Q.-L, Jia H.-W, Liu Y, Xing Y.-K, Ma R.-C, Wang M.-M, Qu G.-R, Mei T.-S, Guo H.-M. Org. Lett 2021; 23: 1209
  • 60 Cong T, Dhawa U, Scheremetjew A, Ackermann L. ACS Catal 2019; 9: 7690
  • 61 Xu H.-C, Moeller KD. J. Am. Chem. Soc 2010; 132: 2839
  • 62 Xu H.-C, Moeller KD. Angew. Chem. Int. Ed 2010; 49: 8004
  • 63 Xu H.-C, Moeller KD. J. Am. Chem. Soc 2008; 130: 13542
  • 64 Sutterer A, Moeller KD. J. Am. Chem. Soc 2000; 122: 5636
  • 65 Xiao H.-L, Zeng C.-C, Tian H.-Y, Hu L.-M, Little RD. J. Electroanal. Chem 2014; 727: 120
  • 66 Li W.-C, Zeng C.-C, Hu L.-M, Tian H.-Y, Little RD. Adv. Synth. Catal 2013; 355: 2884
  • 67 Chiba K, Fukuda M, Kim S, Kitano Y, Tada M. J. Org. Chem 1999; 64: 7654
  • 68 Gieshoff T, Kehl A, Schollmeyer D, Moeller KD, Waldvogel SR. Chem. Commun. (Cambridge) 2017; 53: 2974
  • 69 Lee D.-S. Tetrahedron: Asymmetry 2009; 20: 2014
  • 70 Sierecki E, Errasti G, Martens T, Royer J. Tetrahedron 2010; 66: 10002
  • 71 Okimoto M, Ohashi K, Yamamori H, Nishikawa S, Hoshi M, Yoshida T. Synthesis 2012; 44: 1315
  • 72 Dudkina YB, Mikhaylov DY, Gryaznova TV, Tufatullin AI, Kataeva ON, Vicic DA, Budnikova YH. Organometallics 2013; 32: 4785
  • 73 Li Y.-Q, Yang Q.-L, Fang P, Mei T.-S, Zhang D. Org. Lett 2017; 19: 2905
  • 74 Shrestha A, Lee M, Dunn AL, Sanford MS. Org. Lett 2018; 20: 204
  • 75 Wu H, An Q, He C, Fan X, Guo W, Zuo M, Xu C, Guo R, Chu W, Sun Z. Adv. Synth. Catal 2020; 362: 2459
  • 76 Sauermann N, Meyer TH, Tian C, Ackermann L. J. Am. Chem. Soc 2017; 139: 18452
  • 77 Tian C, Dhawa U, Struwe J, Ackermann L. Chin. J. Chem 2019; 37: 552
  • 78 Zhang S.-K, Struwe J, Hu L, Ackermann L. Angew. Chem. Int. Ed 2020; 59: 3178
  • 79 Massignan L, Tan X, Meyer TH, Kuniyil R, Messinis AM, Ackermann L. Angew. Chem. Int. Ed 2020; 59: 3184
  • 80 Tan X, Massignan L, Hou X, Frey J, Oliveira JCA, Hussain MN, Ackermann L. Angew. Chem. Int. Ed 2021; 60: 13264
  • 81 Yang Q.-L, Li Y.-Q, Ma C, Fang P, Zhang X.-J, Mei T.-S. J. Am. Chem. Soc 2017; 139: 3293
  • 82 OʼReilly ME, Kim RS, Oh S, Surendranath Y. ACS Cent. Sci 2017; 3: 1174
  • 83 Sauermann N, Mei R, Ackermann L. Angew. Chem. Int. Ed 2018; 57: 5090
  • 84 Gao X, Wang P, Zeng L, Tang S, Lei A. J. Am. Chem. Soc 2018; 140: 4195
  • 85 Zhang S.-K, Samanta RC, Sauermann N, Ackermann L. Chem.–Eur. J 2018; 24: 19166
  • 86 Kathiravan S, Suriyanarayanan S, Nicholls IA. Org. Lett 2019; 21: 1968
  • 87 Duan Z, Zhang L, Zhang W, Lu L, Zeng L, Shi R, Lei A. ACS Catal 2020; 10: 3828
  • 88 Yang Q.-L, Wang X.-Y, Lu J.-Y, Zhang L.-P, Fang P, Mei T.-S. J. Am. Chem. Soc 2018; 140: 11487
  • 89 Kakiuchi F, Kochi T, Mutsutani H, Kobayashi N, Urano S, Sato M, Nishiyama S, Tanabe T. J. Am. Chem. Soc 2009; 131: 11310
  • 90 Aiso H, Kochi T, Mutsutani H, Tanabe T, Nishiyama S, Kakiuchi F. J. Org. Chem 2012; 77: 7718
  • 91 Konishi M, Tsuchida K, Sano K, Kochi T, Kakiuchi F. J. Org. Chem 2017; 82: 8716
  • 92 Sano K, Kimura N, Kochi T, Kakiuchi F. Asian J. Org. Chem 2018; 7: 1311
  • 93 Yang Q.-L, Wang X.-Y, Wang T.-L, Yang X, Liu D, Tong X, Wu X.-Y, Mei T.-S. Org. Lett 2019; 21: 2645
  • 94 Yang Q.-L, Wang X.-Y, Weng X.-J, Yang X, Xu X.-T, Tong X, Fang P, Wu X.-Y, Mei T.-S. Acta Chim. Sinica 2019; 77: 866
  • 95 Grayaznova TV, Dudkina YB, Islamov DR, Kataeva ON, Sinyashin OG, Vicic DA, Budnikova YH. J. Organomet. Chem 2015; 785: 68
  • 96 Gryaznova T, Dudkina Y, Khrizanforov M, Sinyashin O, Kataeva O, Budnikova Y. J. Solid State Electrochem 2015; 19: 2665
  • 97 Dudkina YB, Gryaznova TV, Kataeva ON, Budnikova YH, Sinyashin OG. Russ. Chem. Bull 2014; 63: 2641
  • 98 Wu Z.-J, Su F, Lin W, Song J, Wen T.-B, Zhang H.-J, Xu H.-C. Angew. Chem. Int. Ed 2019; 58: 16770