Ackermann, L. : 2022 Science of Synthesis, 2021/5: Electrochemistry in Organic Synthesis DOI: 10.1055/sos-SD-236-00136
Electrochemistry in Organic Synthesis

7 Electrochemically Generated Nitrogen-Centered Radicals

More Information

Book

Editor: Ackermann, L.

Authors: Brown, R. C. D. ; Enders, P.; Fang, P.; Folgueiras-Amador, A. A. ; Francke, R. ; Galczynski, J.; Gosmini, C. ; Hodgson, J. W.; Hou, Z.-W.; Huang, H.; Huang, Z.; Inagi, S. ; Kuciński, K. ; Kuriyama, M. ; Lam, K. ; Lambert, T. H.; Leech, M. C. ; Lennox, A. J. J. ; Lin, Z.; Little, R. D.; Massignan, L.; Mei, T.-S.; Meyer, T. H.; Moeller, K. D. ; Onomura, O. ; Prudlik, A.; Ruan, Z. ; Scheremetjew, A. ; Schiltz, P.; Selt, M.; Villani, E. ; Waldvogel, S. R. ; Wang, Z.-H.; Wu, T.; Xing, Y.-K.; Xu, H.-C. ; Yamamoto, K.

Title: Electrochemistry in Organic Synthesis

Print ISBN: 9783132442122; Online ISBN: 9783132442146; Book DOI: 10.1055/b000000126

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

Nitrogen-centered radicals are versatile reactive intermediates for organic synthesis. This chapter describes recent progress in the electrochemical generation and reactions of nitrogen-centered radicals. Under electrochemical conditions, various nitrogen-centered radicals are generated through electrolysis of readily available precursors such as N—H bonds or azides. These reactive intermediates undergo addition reactions to π-systems or hydrogen-atom abstraction to generate various nitrogen-containing compounds.

 
  • 1 Ruiz-Castillo P, Buchwald SL. Chem. Rev 2016; 116: 12564
  • 2 Hartwig JF. Acc. Chem. Res 2008; 41: 1534
  • 3 Bhunia S, Pawar GG, Kumar SV, Jiang Y, Ma D. Angew. Chem. Int. Ed 2017; 56: 16136
  • 4 Chen J.-R, Hu X.-Q, Lu L.-Q, Xiao W.-J. Chem. Soc. Rev 2016; 45: 2044
  • 5 Yu X.-Y, Zhao Q.-Q, Chen J, Xiao W.-J, Chen J.-R. Acc. Chem. Res 2020; 53: 1066
  • 6 Xiong T, Zhang Q. Chem. Soc. Rev 2016; 45: 3069
  • 7 Jiang H, Studer A. CCS Chem 2019; 1: 38
  • 8 Gentry EC, Knowles RR. Acc. Chem. Res 2016; 49: 1546
  • 9 Zhang W, Wang F, McCann SD, Wang D, Chen P, Stahl SS, Liu G. Science (Washington, D. C.) 2016; 353: 1014
  • 10 Jiang H, Studer A. Angew. Chem. Int. Ed 2018; 57: 10707
  • 11 Yan M, Kawamata Y, Baran PS. Chem. Rev 2017; 117: 13230
  • 12 Moeller KD. Chem. Rev 2018; 118: 4817
  • 13 Kolbe H. Justus Liebigs Ann. Chem 1849; 69: 257
  • 14 Feng R, Smith JA, Moeller KD. Acc. Chem. Res 2017; 50: 2346
  • 15 Waldvogel SR, Lips S, Selt M, Riehl B, Kampf CJ. Chem. Rev 2018; 118: 6706
  • 16 Yuan Y, Lei A. Acc. Chem. Res 2019; 52: 3309
  • 17 Kärkäs MD. Chem. Soc. Rev 2018; 47: 5786
  • 18 Xiong P, Xu H.-C. Acc. Chem. Res 2019; 52: 3339
  • 19 Siu JC, Fu N, Lin S. Acc. Chem. Res 2020; 53: 547
  • 20 Schäfer H. Angew. Chem. Int. Ed. Engl 1970; 9: 158
  • 21 Danielmeier K, Schierle K, Steckhan E. Tetrahedron 1996; 52: 9743
  • 22 Gieshoff T, Kehl A, Schollmeyer D, Moeller KD, Waldvogel SR. J. Am. Chem. Soc 2017; 139: 12317
  • 23 Xu F, Zhu L, Zhu S, Yan X, Xu H.-C. Chem.–Eur. J 2014; 20: 12740
  • 24 Zhu L, Xiong P, Mao Z.-Y, Wang Y.-H, Yan X, Lu X, Xu H.-C. Angew. Chem. Int. Ed 2016; 55: 2226
  • 25 Hou Z.-W, Yan H, Song J.-S, Xu H.-C. Chin. J. Chem 2018; 36: 909
  • 26 Xiong P, Xu H.-H, Xu H.-C. J. Am. Chem. Soc 2017; 139: 2956
  • 27 Yi X, Hu X. Angew. Chem. Int. Ed 2019; 58: 4700
  • 28 Hou Z.-W, Mao Z.-Y, Zhao H.-B, Melcamu YY, Lu X, Song J, Xu H.-C. Angew. Chem. Int. Ed 2016; 55: 9168
  • 29 Hou Z.-W, Mao Z.-Y, Song J, Xu H.-C. ACS Catal 2017; 7: 5810
  • 30 Hou Z.-W, Mao Z.-Y, Melcamu YY, Lu X, Xu H.-C. Angew. Chem. Int. Ed 2018; 57: 1636
  • 31 Feng E.-Q, Hou Z.-W, Xu H.-C. Chin. J. Org. Chem 2019; 39: 1424
  • 32 Lv S, Han X, Wang J.-Y, Zhou M, Wu Y, Ma L, Niu L, Gao W, Zhou J, Hu W, Cui Y, Chen J. Angew. Chem. Int. Ed 2020; 59: 11583
  • 33 Xu F, Long H, Song J, Xu H.-C. Angew. Chem. Int. Ed 2019; 58: 9017
  • 34 Li J.-S, Yang P.-P, Xie X.-Y, Jiang S, Tao L, Li Z.-W, Lu C.-H, Liu W.-D. Adv. Synth. Catal 2020; 362: 1977
  • 35 Xu H.-C, Campbell JM, Moeller KD. J. Org. Chem 2014; 79: 379
  • 36 Zhang S, Li L, Xue M, Zhang R, Xu K, Zeng C. Org. Lett 2018; 20: 3443
  • 37 Xu Z, Huang Z, Li Y, Kuniyil R, Zhang C, Ackermann L, Ruan Z. Green Chem 2020; 22: 1099
  • 38 Wang N, Gu Q.-S, Li Z.-L, Li Z, Guo Y.-L, Guo Z, Liu X.-Y. Angew. Chem. Int. Ed 2018; 57: 14225
  • 39 Gieshoff T, Schollmeyer D, Waldvogel SR. Angew. Chem. Int. Ed 2016; 55: 9437
  • 40 Xu H.-C, Moeller KD. J. Am. Chem. Soc 2010; 132: 2839
  • 41 Xu H.-C, Moeller KD. J. Am. Chem. Soc 2008; 130: 13542
  • 42 Horner JH, Musa OM, Bouvier A, Newcomb M. J. Am. Chem. Soc 1998; 120: 7738
  • 43 Wang Q, Wang P, Gao X, Wang D, Wang S, Liang X, Wang L, Zhang H, Lei A. Chem. Sci 2020; 11: 2181
  • 44 Hu X, Zhang G, Nie L, Kong T, Lei A. Nat. Commun 2019; 10: 5467
  • 45 Zhang Y, Lin Z, Ackermann L. Chem.–Eur. J 2021; 27: 242
  • 46 Gao W.-J, Li W.-C, Zeng C.-C, Tian H.-Y, Hu L.-M, Little RD. J. Org. Chem 2014; 79: 9613
  • 47 Qiu Y, Struwe J, Meyer TH, Oliveira JCA, Ackermann L. Chem.–Eur. J 2018; 24: 12784
  • 48 Hu X, Zhang G, Bu F, Nie L, Lei A. ACS Catal 2018; 8: 9370
  • 49 Herold S, Bafaluy D, Muñiz K. Green Chem 2018; 20: 3191
  • 50 Shono T, Matsumura Y, Katoh S, Takeuchi K, Sasaki K, Kamada T, Shimizu R. J. Am. Chem. Soc 1990; 112: 2368
  • 51 Nikolaienko P, Jentsch M, Kale AP, Cai Y, Rueping M. Chem.–Eur. J 2019; 25: 7177
  • 52 Majetich G, Wheless K. Tetrahedron 1995; 51: 7095
  • 53 Jackman MM, Cai Y, Castle SL. Synthesis 2017; 49: 1785
  • 54 Li Z, Jiao L, Sun Y, He Z, Wei Z, Liao W.-W. Angew. Chem. Int. Ed 2020; 59: 7266
  • 55 Zhao H.-B, Hou Z.-W, Liu Z.-J, Zhou Z.-F, Song J, Xu H.-C. Angew. Chem. Int. Ed 2017; 56: 587
  • 56 Zhao H.-B, Liu Z.-J, Song J, Xu H.-C. Angew. Chem. Int. Ed 2017; 56: 12732
  • 57 Zhao H.-B, Xu P, Song J, Xu H.-C. Angew. Chem. Int. Ed 2018; 57: 15153
  • 58 Fu N, Sauer GS, Saha A, Loo A, Lin S. Science (Washington, D. C.) 2017; 357: 575
  • 59 Siu JC, Parry JB, Lin S. J. Am. Chem. Soc 2019; 141: 2825
  • 60 Siu JC, Sauer GS, Saha A, Macey RL, Fu N, Chauviré T, Lancaster KM, Lin S. J. Am. Chem. Soc 2018; 140: 12511
  • 61 Niu L, Jiang C, Liang Y, Liu D, Bu F, Shi R, Chen H, Chowdhury AD, Lei A. J. Am. Chem. Soc 2020; 142: 17693
  • 62 Meyer TH, Samanta RC, Del Vecchio A, Ackermann L. Chem. Sci 2021; 12: 2890