Ackermann, L. : 2022 Science of Synthesis, 2021/5: Electrochemistry in Organic Synthesis DOI: 10.1055/sos-SD-236-00167
Electrochemistry in Organic Synthesis

9 Anodic Arylation Reactions

More Information

Book

Editor: Ackermann, L.

Authors: Ackermann, L. ; Brown, R. C. D. ; Enders, P.; Fang, P.; Folgueiras-Amador, A. A. ; Francke, R. ; Galczynski, J.; Gosmini, C. ; Hodgson, J. W.; Hou, Z.-W.; Huang, H.; Huang, Z.; Inagi, S. ; Kuciński, K. ; Kuriyama, M. ; Lam, K. ; Lambert, T. H.; Leech, M. C. ; Lennox, A. J. J. ; Lin, Z.; Little, R. D.; Massignan, L.; Mei, T.-S.; Meyer, T. H.; Moeller, K. D. ; Onomura, O. ; Prudlik, A.; Ruan, Z. ; Scheremetjew, A. ; Schiltz, P.; Selt, M.; Villani, E. ; Waldvogel, S. R. ; Wang, Z.-H.; Wu, T.; Xing, Y.-K.; Xu, H.-C. ; Yamamoto, K.

Title: Electrochemistry in Organic Synthesis

Print ISBN: 9783132442122; Online ISBN: 9783132442146; Book DOI: 10.1055/b000000126

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

The arylation of organic compounds is a tremendously important tool in organic synthesis, since substituted (het)arenes are essential moieties in many applications ranging from organic intermediates to natural products, pharmaceuticals, and materials. Therefore, an effective, sustainable, and economic synthetic accesses to such compounds is of great demand. This chapter covers the arylation of carbon and heteroatom compounds via an electrooxidative pathway. Direct dehydrogenative methods without the application of a metal catalyst as well as constant-current electrolyses are emphasized. The electrochemical synthesis of biaryl compounds, arylalkanes and arylalkenes, as well as arylated nitrogen, oxygen, and sulfur compounds are described in detail. Additionally, the synthesis of heterocycles through anodic arylation reactions is discussed.

 
  • 1 Modern Arylation Methods. Ackermann L. Wiley-VCH; Weinheim, Germany 2009
  • 2 Nelson TD, Crouch RD. Org. React. (N. Y.) 2004; 63: 265
  • 3 Beletskaya IP, Cheprakov AV. Chem. Rev. 2000; 100: 3009
  • 4 Tamao K, Sumitani K, Kumada M. J. Am. Chem. Soc. 1972; 94: 4374
  • 5 Chinchilla R, Nájera C. Chem. Soc. Rev. 2011; 40: 5084
  • 6 Baba S, Negishi E. J. Am. Chem. Soc. 1976; 98: 6729
  • 7 Stille JK. Angew. Chem. 1986; 98: 504 Angew. Chem. Int. Ed. 1986; 25: 508
  • 8 Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
  • 9 Anastas P, Eghbali N. Chem. Soc. Rev. 2010; 39: 301
  • 10 Frontana-Uribe BA, Little RD, Ibanez JG, Palma A, Vasquez-Medrano R. Green Chem. 2010; 12: 2099
  • 11 Schäfer HJ. C. R. Chim. 2011; 14: 745
  • 12 Handbook of C—H Transformations: Applications in Organic Synthesis. Dyker G. Wiley-VCH; Weinheim, Germany 2005
  • 13 Waldvogel SR, Lips S, Selt M, Riehl B, Kampf CJ. Chem. Rev. 2018; 118: 6706
  • 14 Negishi E. Angew. Chem. 2011; 123: 6870 Angew. Chem. Int. Ed. 2011; 50: 6738
  • 15 Suzuki A. Angew. Chem. 2011; 123: 6854 Angew. Chem. Int. Ed. 2011; 50: 6722
  • 16 Modern Arene Chemistry: Concepts, Synthesis, and Applications. Astruc D. Wiley-VCH; Weinheim, Germany 2002
  • 17 Bringmann G, Gulder T, Gulder TAM, Breuning M. Chem. Rev. 2011; 111: 563
  • 18 Kozlowski MC, Morgan BJ, Linton EC. Chem. Soc. Rev. 2009; 38: 3193
  • 19 von Nussbaum F, Brands M, Hinzen B, Weigand S, Häbich D. Angew. Chem. 2006; 118: 5194 Angew. Chem. Int. Ed. 2006; 45: 5072
  • 20 Magano J, Dunetz JR. Chem. Rev. 2011; 111: 2177
  • 21 Grimsdale AC, Chan KL, Martin RE, Jokisz PG, Holmes AB. Chem. Rev. 2009; 109: 897
  • 22 Kirsch P, Bremer M. Angew. Chem. 2000; 112: 4384 Angew. Chem. Int. Ed. 2000; 39: 4216
  • 23 Okamoto K, Zhang J, Housekeeper JB, Marder SR, Luscombe CK. Macromolecules 2013; 46: 8059
  • 24 Cortez GA, Schrock RR, Hoveyda AH. Angew. Chem. 2007; 119: 4618 Angew. Chem. Int. Ed. 2007; 46: 4534
  • 25 Franke R, Selent D, Börner A. Chem. Rev. 2012; 112: 5675
  • 26 van Leeuwen PWNM, Kamer PCJ, Claver C, Pàmies O, Diéguez M. Chem. Rev. 2011; 111: 2077
  • 27 Corbet J.-P, Mignani G. Chem. Rev. 2006; 106: 2651
  • 28 Hassan J, Sévignon M, Gozzi C, Schulz E, Lemaire M. Chem. Rev. 2002; 102: 1359
  • 29 Stanforth SP. Tetrahedron 1998; 54: 263
  • 30 Alberico D, Scott ME, Lautens M. Chem. Rev. 2007; 107: 174
  • 31 Aiso H, Kochi T, Mutsutani H, Tanabe T, Nishiyama S, Kakiuchi F. J. Org. Chem. 2012; 77: 7718
  • 32 Amatore C, Cammoun C, Jutand A. Eur. J. Org. Chem. 2008; 4567
  • 33 Mitsudo K, Shiraga T, Kagen D, Shi D, Becker JY, Tanaka H. Tetrahedron 2009; 65: 8384
  • 34 Mitsudo K, Shiraga T, Tanaka H. Tetrahedron Lett. 2008; 49: 6593
  • 35 Beil SB, Müller T, Sillart SB, Franzmann P, Bomm A, Holtkamp M, Karst U, Schade W, Waldvogel SR. Angew. Chem. 2018; 130: 2475 Angew. Chem. Int. Ed. 2018; 57: 2450
  • 36 Boden N, Bushby RJ, Cooke G, Lozman OR, Lu Z. J. Am. Chem. Soc. 2001; 123: 7915
  • 37 Schopohl MC, Siering C, Kataeva O, Waldvogel SR. Angew. Chem. Int. Ed. 2003; 42: 2620
  • 38 Rose A, Zhu Z, Madigan CF, Swager TM, Bulović V. Nature (London) 2005; 434: 876
  • 39 Siering C, Kerschbaumer H, Nieger M, Waldvogel SR. Org. Lett. 2006; 8: 1471
  • 40 Regenbrecht C, Waldvogel SR. Beilstein J. Org. Chem. 2012; 8: 1721
  • 41 Kirste A, Nieger M, Malkowsky IM, Stecker F, Fischer A, Waldvogel SR. Chem.–Eur. J. 2009; 15: 2273
  • 42 Eberson L, Hartshorn MP, Persson O, Radner F. Chem. Commun. (Cambridge) 1996; 2105
  • 43 Hollóczki O, Berkessel A, Mars J, Mezger M, Wiebe A, Waldvogel SR, Kirchner B. ACS Catal. 2017; 7: 1846
  • 44 Selt M, Mentizi S, Schollmeyer D, Franke R, Waldvogel SR. Synlett 2019; 30: 2062
  • 45 Gleede B, Selt M, Franke R, Waldvogel SR. Chem.–Eur. J. 2021; 27: 8252
  • 46 Selt M, Franke R, Waldvogel SR. Org. Process Res. Dev. 2020; 24: 2347
  • 47 Selt M, Gleede B, Franke R, Stenglein A, Waldvogel SR. J. Flow Chem. 2020; 11: 143
  • 48 Malkowsky IM, Rommel CE, Fröhlich R, Griesbach U, Pütter H, Waldvogel SR. Chem.–Eur. J. 2006; 12: 7482
  • 49 Malkowsky IM, Fröhlich R, Griesbach U, Pütter H, Waldvogel SR. Eur. J. Inorg. Chem. 2006; 1690
  • 50 Yoshida J.-i, Shimizu A, Hayashi R. Chem. Rev. 2018; 118: 4702
  • 51 Morofuji T, Shimizu A, Yoshida J.-i. Angew. Chem. 2012; 124: 7371 Angew. Chem. Int. Ed. 2012; 51: 7259
  • 52 Elsler B, Schollmeyer D, Dyballa KM, Franke R, Waldvogel SR. Angew. Chem. 2014; 126: 5311 Angew. Chem. Int. Ed. 2014; 53: 5210
  • 53 Kirste A, Elsler B, Schnakenburg G, Waldvogel SR. J. Am. Chem. Soc. 2012; 134: 3571
  • 54 Elsler B, Wiebe A, Schollmeyer D, Dyballa KM, Franke R, Waldvogel SR. Chem.–Eur. J. 2015; 21: 12321
  • 55 Wiebe A, Schollmeyer D, Dyballa KM, Franke R, Waldvogel SR. Angew. Chem. 2016; 128: 11979 Angew. Chem. Int. Ed. 2016; 55: 11801
  • 56 Wang Q.-Q, Jiang Y.-Y, Zeng C.-C, Sun B.-G. Chin. J. Chem. 2019; 37: 352
  • 57 Schulz L, Enders M, Elsler B, Schollmeyer D, Dyballa KM, Franke R, Waldvogel SR. Angew. Chem. 2017; 129: 4955 Angew. Chem. Int. Ed. 2017; 56: 4877
  • 58 Schulz L, Husmann J.-Å, Waldvogel SR. Electrochim. Acta 2020; 337: 135786
  • 59 Wiebe A, Lips S, Schollmeyer D, Franke R, Waldvogel SR. Angew. Chem. 2017; 129: 14920 Angew. Chem. Int. Ed. 2017; 56: 14727
  • 60 Lielpetere A, Jirgensons A. Eur. J. Org. Chem. 2020; 4510
  • 61 Gütz C, Klöckner B, Waldvogel SR. Org. Process Res. Dev. 2016; 20: 26
  • 62 Amatore C, Cammoun C, Jutand A. Adv. Synth. Catal. 2007; 349: 292
  • 63 Tian J, Moeller KD. Org. Lett. 2005; 7: 5381
  • 64 Baumann AN, Music A, Dechent J, Müller N, Jagau TC, Didier D. Chem.–Eur. J. 2020; 26: 8382
  • 65 Jampilek J. Molecules 2019; 24: 3839
  • 66 Gomtsyan A. Chem. Heterocycl. Compd. (Engl. Transl.) 2012; 48: 7
  • 67 Sakakibara Y, Ito E, Fukushima T, Murakami K, Itami K. Chem.–Eur. J. 2018; 24: 9254
  • 68 Jeanmart S, Edmunds AJF, Lamberth C, Pouliot M. Bioorg. Med. Chem. 2016; 24: 317
  • 69 Newman DJ, Cragg GM. J. Nat. Prod. 2020; 83: 770
  • 70 Guo L, Niu Y, Xu H, Li Q, Razzaque S, Huang Q, Jin S, Tan B. J. Mater. Chem. A 2018; 6: 19775
  • 71 Bowie AL, Hughes CC, Trauner D. Org. Lett. 2005; 7: 5207
  • 72 Amino Group Chemistry: From Synthesis to the Life Sciences. Ricci A. Wiley-VCH; Weinheim, Germany 2008
  • 73 Hili R, Yudin AK. Nat. Chem. Biol. 2006; 2: 284
  • 74 MacDiarmid AG. Synth. Met. 1997; 84: 27
  • 75 Bourdelande JL, Gallardo I, Guirado G. J. Am. Chem. Soc. 2007; 129: 2817
  • 76 Morofuji T, Shimizu A, Yoshida J.-i. J. Am. Chem. Soc. 2013; 135: 5000
  • 77 Herold S, Möhle S, Zirbes M, Richter F, Nefzger H, Waldvogel SR. Eur. J. Org. Chem. 2016; 1274
  • 78 Morofuji T, Shimizu A, Yoshida J.-i. J. Am. Chem. Soc. 2015; 137: 9816
  • 79 Hu X, Zhang G, Nie L, Kong T, Lei A. Nat. Commun. 2019; 10: 5467
  • 80 Morofuji T, Shimizu A, Yoshida J.-i. J. Am. Chem. Soc. 2014; 136: 4496
  • 81 Wu Y.-C, Jiang S.-S, Song R.-J, Li J.-H. Chem. Commun. (Cambridge) 2019; 55: 4371
  • 82 Weinberg NL, Weinberg HR. Chem. Rev. 1968; 68: 449
  • 83 Weinberg NL, Belleau B. Tetrahedron 1973; 29: 279
  • 84 Sauermann N, Meyer TH, Tian C, Ackermann L. J. Am. Chem. Soc. 2017; 139: 18452
  • 85 Li Y.-Q, Yang Q.-L, Fang P, Mei T.-S, Zhang D. Org. Lett. 2017; 19: 2905
  • 86 Shrestha A, Lee M, Dunn AL, Sanford MS. Org. Lett. 2018; 20: 204
  • 87 Tian C, Dhawa U, Struwe J, Ackermann L. Chin. J. Chem. 2019; 37: 552
  • 88 Fujimoto K, Tokuda Y, Maekawa H, Matsubara Y, Mizuno T, Nishiguchi I. Tetrahedron 1996; 52: 3889
  • 89 Hammerich O, Parker VD. Sulfur Rep. 1981; 1: 317
  • 90 Matsumoto K, Kozuki Y, Ashikari Y, Suga S, Kashimura S, Yoshida J.-i. Tetrahedron Lett. 2012; 53: 1916
  • 91 Zeng C.-C, Liu F.-J, Ping D.-W, Hu L.-M, Cai Y.-L, Zhong R.-G. Tetrahedron 2009; 65: 4505
  • 92 Zeng C.-C, Ping D.-W, Zhang S.-C, Zhong R.-G, Becker JY. J. Electroanal. Chem. 2008; 622: 90
  • 93 Fakhari AR, Hosseiny Davarani SS, Ahmar H, Hasheminasab K, Khavasi HR. J. Heterocycl. Chem. 2009; 46: 443
  • 94 Nematollahi D, Tammari E. J. Org. Chem. 2005; 70: 7769
  • 95 Fotouhi L, Nikoofar K. Tetrahedron Lett. 2013; 54: 2903
  • 96 Gitkis A, Becker JY. Electrochim. Acta 2010; 55: 5854
  • 97 Nematollahi D, Amani A. J. Electroanal. Chem. 2011; 651: 72
  • 98 Nematollahi D, Esmaili R. Tetrahedron Lett. 2010; 51: 4862
  • 99 Blum SP, Schollmeyer D, Turks M, Waldvogel SR. Chem.–Eur. J. 2020; 26: 8358
  • 100 Blum SP, Karakaya T, Schollmeyer D, Klapars A, Waldvogel SR. Angew. Chem. 2021; 133: 5114 Angew. Chem. Int. Ed. 2021; 60: 5056
  • 101 Wang Y, Tian B, Ding M, Shi Z. Chem.–Eur. J. 2020; 26: 4297
  • 102 Zhang L, Zhang Z, Hong J, Yu J, Zhang J, Mo F. J. Org. Chem. 2018; 83: 3200
  • 103 Hou Z.-W, Mao Z.-Y, Zhao H.-B, Melcamu YY, Lu X, Song J, Xu H.-C. Angew. Chem. 2016; 128: 9314 Angew. Chem. Int. Ed. 2016; 55: 9168
  • 104 Maity A, Frey BL, Hoskinson ND, Powers DC. J. Am. Chem. Soc. 2020; 142: 4990
  • 105 Kehl A, Schupp N, Breising VM, Schollmeyer D, Waldvogel SR. Chem.–Eur. J. 2020; 26: 15847
  • 106 Zhao H.-B, Hou Z.-W, Liu Z.-J, Zhou Z.-F, Song J, Xu H.-C. Angew. Chem. 2017; 129: 602 Angew. Chem. Int. Ed. 2017; 56: 587
  • 107 Gieshoff T, Kehl A, Schollmeyer D, Moeller KD, Waldvogel SR. Chem. Commun. (Cambridge) 2017; 53: 2974
  • 108 Qian X.-Y, Li S.-Q, Song J, Xu H.-C. ACS Catal. 2017; 7: 2730
  • 109 Wesenberg LJ, Herold S, Shimizu A, Yoshida J.-i, Waldvogel SR. Chem.–Eur. J. 2017; 23: 12096
  • 110 Kehl A, Breising VM, Schollmeyer D, Waldvogel SR. Chem.–Eur. J. 2018; 24: 17230