Ackermann, L. : 2022 Science of Synthesis, 2021/5: Electrochemistry in Organic Synthesis DOI: 10.1055/sos-SD-236-00237
Electrochemistry in Organic Synthesis

12 Asymmetric Electrosynthesis

More Information

Book

Editor: Ackermann, L.

Authors: Ackermann, L. ; Brown, R. C. D. ; Enders, P.; Fang, P.; Folgueiras-Amador, A. A. ; Francke, R. ; Galczynski, J.; Gosmini, C. ; Hodgson, J. W.; Hou, Z.-W.; Huang, H.; Huang, Z.; Inagi, S. ; Kuciński, K. ; Kuriyama, M. ; Lam, K. ; Lambert, T. H.; Leech, M. C. ; Lennox, A. J. J. ; Lin, Z.; Little, R. D.; Massignan, L.; Mei, T.-S.; Meyer, T. H.; Moeller, K. D. ; Onomura, O. ; Prudlik, A.; Ruan, Z. ; Scheremetjew, A. ; Schiltz, P.; Selt, M.; Villani, E. ; Waldvogel, S. R. ; Wang, Z.-H.; Wu, T.; Xing, Y.-K.; Xu, H.-C. ; Yamamoto, K.

Title: Electrochemistry in Organic Synthesis

Print ISBN: 9783132442122; Online ISBN: 9783132442146; Book DOI: 10.1055/b000000126

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

The merging of asymmetric synthesis and electrochemistry offers powerful and environ-mentally benign protocols for the synthesis of optically active compounds. As electro-chemical reactions are performed under unique conditions compared with conventional chemical reactions, a variety of chiral sources have been investigated to achieve efficient asymmetric induction. In this review, selected examples of enantioselective electrosyn-thesis by using chiral mediators, organocatalysts, metal catalysts, and modified electrodes under both electrooxidative and electroreductive conditions are described. These reactions are organized according to the type of chiral source employed. Asymmetric electrosynthesis via memory of chirality is also included.

 
  • 1 Gourley RN, Grimshaw J, Miller PG. Chem. Commun. 1967; 1278
  • 2 Kopilov J, Kariv E, Miller LL. J. Am. Chem. Soc. 1977; 99: 3450
  • 3 Schoo N, Schäfer H.-J. Liebigs Ann. Chem. 1993; 601
  • 4 Chen B.-L, Tu Z.-Y, Zhu H.-W, Sun W.-W, Wang H, Lu J.-X. Electrochim. Acta 2014; 116: 475
  • 5 Watkins BF, Behling JR, Kariv E, Miller LL. J. Am. Chem. Soc. 1975; 97: 3549
  • 6 Firth BE, Miller LL. J. Am. Chem. Soc. 1976; 98: 8272
  • 7 Seebach D, Oei H.-A, Daum H. Chem. Ber. 1977; 110: 2316
  • 8 Lin Q, Li L, Luo S. Chem.–Eur. J. 2019; 25: 10033
  • 9 Ghosh M, Shinde VS, Rueping M. Beilstein J. Org. Chem. 2019; 15: 2710
  • 10 Chang X, Zhang Q, Guo C. Angew. Chem. Int. Ed. 2020; 59: 12612
  • 11 Horner L, Degner D. Electrochim. Acta 1974; 19: 611
  • 12 Kodama Y, Fujiwara A, Kawamoto H, Ohta N, Kitani A, Ito S. Chem. Lett. 2001; 30: 240
  • 13 Yadav AK, Singh A. Bull. Chem. Soc. Jpn. 2002; 75: 587
  • 14 Maekawa H, Itoh K, Goda S, Nishiguchi I. Chirality 2003; 15: 95
  • 15 Schmitz LM, Rosenthal K, Lütz S, In: Bioelectrosynthesis. Advances in Biochemical Engineering/Biotechnology Harnisch F, Holtmann D. Springer Cham, Switzerland 2017; 167. 87
  • 16 Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
  • 17 Nutting JE, Rafiee M, Stahl SS. Chem. Rev. 2018; 118: 4834
  • 18 Kashiwagi Y, Kurashima F, Kikuchi C, Anzai J.-i, Osa T, Bobbitt JM. Tetrahedron Lett. 1999; 40: 6469
  • 19 Kuroboshi M, Yoshihisa H, Cortona MN, Kawakami Y, Gao Z, Tanaka H. Tetrahedron Lett. 2000; 41: 8131
  • 20 Shiigi H, Mori H, Tanaka T, Demizu Y, Onomura O. Tetrahedron Lett. 2008; 49: 5247
  • 21 Elsherbini M, Wirth T. Chem.–Eur. J. 2018; 24: 13399
  • 22 Gao W.-C, Xiong Z.-Y, Pirhaghani S, Wirth T. Synthesis 2019; 51: 276
  • 23 Yoshida J.-i, Nagaki A, In: Microreactors in Preparative Chemistry Reschetilowski W. Wiley-VCH Weinheim, Germany 2013; 231
  • 24 Folgueiras-Amador AA, Wirth T. Science of Synthesis: Flow Chemistry in Organic Synthesis. 2018: 147
  • 25 Girard SA, Knauber T, Li C.-J. Angew. Chem. Int. Ed. 2014; 53: 74
  • 26 Fu N, Li L, Yang Q, Luo S. Org. Lett. 2017; 19: 2122
  • 27 Gao P.-S, Weng X.-J, Wang Z.-H, Zheng C, Sun B, Chen Z.-H, You S.-L, Mei T.-S. Angew. Chem. Int. Ed. 2020; 59: 15254
  • 28 Li L, Li Y, Fu N, Zhang L, Luo S. Angew. Chem. Int. Ed. 2020; 59: 14347
  • 29 Campbell CD, Rees CW. J. Chem. Soc. C 1969; 5: 742
  • 30 Jensen KL, Franke PT, Nielsen LT, Daasbjerg K, Jørgensen KA. Angew. Chem. Int. Ed. 2010; 49: 129
  • 31 Ho X.-H, Mho S.-i, Kang H, Jang H.-Y. Eur. J. Org. Chem. 2010; 4436
  • 32 Lu F.-Y, Chen Y.-J, Chen Y, Ding X, Guan Z, He Y.-H. Chem. Commun. (Cambridge) 2020; 56: 623
  • 33 Chang X, Zhang J, Zhang Q, Guo C. Angew. Chem. Int. Ed. 2020; 59: 18500
  • 34 Day DP, Sellars PB. Eur. J. Org. Chem. 2017; 1034
  • 35 Bulman Page PC, Marken F, Williamson C, Chan Y, Buckley BR, Bethell D. Adv. Synth. Catal. 2008; 350: 1149
  • 36 Kolb HC, VanNieuwenhze MS, Sharpless KB. Chem. Rev. 1994; 94: 2483
  • 37 Amundsen AR, Balko EN. J. Appl. Electrochem. 1992; 22: 810
  • 38 Torii S, Liu P, Bhuvaneswari N, Amatore C, Jutand A. J. Org. Chem. 1996; 61: 3055
  • 39 Minato D, Arimoto H, Nagasue Y, Demizu Y, Onomura O. Tetrahedron 2008; 64: 6675
  • 40 Zhang L, Meggers E. Chem.–Asian J. 2017; 12: 2335
  • 41 Huang X, Zhang Q, Lin J, Harms K, Meggers E. Nat. Catal. 2019; 2: 34
  • 42 Yan M, Kawamata Y, Baran PS. Angew. Chem. Int. Ed. 2018; 57: 4149
  • 43 Zhang Q, Chang X, Peng L, Guo C. Angew. Chem. Int. Ed. 2019; 58: 6999
  • 44 Liao G, Zhou T, Yao Q.-J, Shi B.-F. Chem. Commun. (Cambridge) 2019; 55: 8514
  • 45 Dhawa U, Tian C, Wdowik T, Oliveira JCA, Hao J, Ackermann L. Angew. Chem. Int. Ed. 2020; 59: 13451
  • 46 Fu N, Song L, Liu J, Shen Y, Siu JC, Lin S. J. Am. Chem. Soc. 2019; 141: 14480
  • 47 Song L, Fu N, Ernst BG, Lee WH, Frederick MO, DiStasio Jr RA, Lin S. Nat. Chem. 2020; 12: 747
  • 48 Qiu H, Shuai B, Wang Y.-Z, Liu D, Chen Y.-G, Gao P.-S, Ma H.-X, Chen S, Mei T.-S. J. Am. Chem. Soc. 2020; 142: 9872
  • 49 Akiyama T. Chem. Rev. 2007; 107: 5744
  • 50 Terada M. Synthesis 2010; 1929
  • 51 Brunel JM. Chem. Rev. 2007; 107: PR1
  • 52 Durandetti M, Gosmini C, Périchon J. Tetrahedron 2007; 63: 1146
  • 53 Weix DJ. Acc. Chem. Res. 2015; 48: 1767
  • 54 Poremba KE, Dibrell SE, Reisman SE. ACS Catal. 2020; 10: 8237
  • 55 DeLano TJ, Reisman SE. ACS Catal. 2019; 9: 6751
  • 56 Cherney AH, Reisman SE. J. Am. Chem. Soc. 2014; 136: 14365
  • 57 Fuchigami T, Inagi S, In: Organic Electrochemistry Hammerich O, Speiser B. CRC Boca Raton, FL 2016; 1489
  • 58 Arnaboldi S, Magni M, Mussini PR. Curr. Opin. Electrochem. 2018; 8: 60
  • 59 Komori T, Nonaka T. J. Am. Chem. Soc. 1984; 106: 2656
  • 60 Kawabata S, Iwata N, Yoneyama H. Chem. Lett. 2000; 29: 110
  • 61 Yamagishi A, Aramata A. J. Chem. Soc., Chem. Commun. 1984; 452
  • 62 Kashiwagi Y, Kurashima F, Chiba S, Anzai J.-i, Osa T, Bobbitt JM. Chem. Commun. (Cambridge) 2003; 114
  • 63 Osa T, Kashiwagi Y, Yanagisawa Y, Bobbitt JM. J. Chem. Soc., Chem. Commun. 1994; 2535
  • 64 Kashiwagi Y, Yanagisawa Y, Kurashima F, Anzai J.-i, Osa T, Bobbitt JM. Chem. Commun. (Cambridge) 1996; 2745
  • 65 Yanagisawa Y, Kashiwagi Y, Kurashima F, Anzai J.-i, Osa T, Bobbitt JM. Chem. Lett. 1996; 1043
  • 66 Yang H.-P, Fen Q, Wang H, Lu J.-X. Electrochem. Commun. 2016; 71: 38
  • 67 Yutthalekha T, Wattanakit C, Lapeyre V, Nokbin S, Warakulwit C, Limtrakul J, Kuhn A. Nat. Commun. 2016; 7: 12678
  • 68 Kashiwagi Y, Ono H, Osa T. Chem. Lett. 1993; 81
  • 69 Kawabata T, Fuji K, In: Topics in Stereochemistry Denmark SE. John Wiley & Sons New York 2003; 23. 175
  • 70 Matsumura Y, Shirakawa Y, Satoh Y, Umino M, Tanaka T, Maki T, Onomura O. Org. Lett. 2000; 2: 1689
  • 71 Wanyoike GN, Onomura O, Maki T, Matsumura Y. Org. Lett. 2002; 4: 1875
  • 72 Wanyoike GN, Matsumura Y, Kuriyama M, Onomura O. Heterocycles 2010; 80: 1177