Ackermann, L. : 2022 Science of Synthesis, 2021/5: Electrochemistry in Organic Synthesis DOI: 10.1055/sos-SD-236-00258
Electrochemistry in Organic Synthesis

13 Electrochemistry in Laboratory Flow Systems

More Information

Book

Editor: Ackermann, L.

Authors: Ackermann, L. ; Brown, R. C. D. ; Enders, P.; Fang, P.; Folgueiras-Amador, A. A. ; Francke, R. ; Galczynski, J.; Gosmini, C. ; Hodgson, J. W.; Hou, Z.-W.; Huang, H.; Huang, Z.; Inagi, S. ; Kuciński, K. ; Kuriyama, M. ; Lam, K. ; Lambert, T. H.; Leech, M. C. ; Lennox, A. J. J. ; Lin, Z.; Little, R. D.; Massignan, L.; Mei, T.-S.; Meyer, T. H.; Moeller, K. D. ; Onomura, O. ; Prudlik, A.; Ruan, Z. ; Scheremetjew, A. ; Schiltz, P.; Selt, M.; Villani, E. ; Waldvogel, S. R. ; Wang, Z.-H.; Wu, T.; Xing, Y.-K.; Xu, H.-C. ; Yamamoto, K.

Title: Electrochemistry in Organic Synthesis

Print ISBN: 9783132442122; Online ISBN: 9783132442146; Book DOI: 10.1055/b000000126

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

Organic electrosynthesis in flow reactors is an area of increasing interest, with efficient mass transport and high electrode area to reactor volume present in many flow electrolysis cell designs facilitating higher rates of production with high selectivity. The controlled reaction environment available in flow cells also offers opportunities to develop new electrochemical processes. In this chapter, various types of electrochemical flow cells are reviewed in the context of laboratory synthesis, paying particular attention to how the different reactor environments impact upon the electrochemical processes, and the factors responsible for good cell performance. Coverage includes well-established plane-parallel-plate designs, reactors with small interelectrode gaps, extended-channel electrolysis cells, and highly sophisticated designs with rapidly rotating electrodes to enhance mass transport. In each case, illustrative electrosyntheses are presented.

 
  • 4 Grimshaw J. Electrochemical Reactions and Mechanisms in Organic Chemistry. Elsevier:; Amsterdam 2000
  • 9 Mitzlaff M, Warning K, Jensen H. Justus Liebigs Ann. Chem. 1978; 1713
  • 13 Delahay P, Tobias CW, Lemmermann WG. Advances in Electrochemistry and Electrochemical Engineering. Wiley; New York 1962
  • 19 Jüttner K, In: Encyclopedia of Electrochemistry Bard AJ, Stratmann M. Wiley-VCH Weinheim, Germany 2007; 5. 1
  • 23 Paddon CA, Atobe M, Fuchigami T, He P, Watts P, Haswell SJ, Pritchard GJ, Bull SD, Marken F. J. Appl. Electrochem. 2006; 36: 617
  • 26 Horcajada R, Okajima M, Suga S, Yoshida J.-i. Chem. Commun. (Cambridge) 2005; 1303
  • 31 Folgueiras-Amador AA, Wirth T. Science of Synthesis: Flow Chemistry in Organic Synthesis 2018; 147
  • 35 Folgueiras-Amador AA, Jolley KE, Birkin PR, Brown RCD, Pletcher D, Pickering S, Sharabi M, de Frutos O, Mateos C, Rincón JA. Electrochem. Commun. 2019; 100: 6
  • 39 www.electrocell.com (accessed October 2021).
  • 40 www.ikaprocess.com/en/Products/Electro-Organic-Synthesis-Systems-cph-45/ElectraSyn-flow-csb-ES/ (accessed October 2021).
  • 41 C-Flow range of electrochemical cells; www.ctechinnovation.com/our-products/c-flow/ (accessed October 2021).
  • 56 Peters BK, Rodriguez KX, Reisberg SH, Beil SB, Hickey DP, Kawamata Y, Collins M, Starr J, Chen L, Udyavara S, Klunder K, Gorey TJ, Anderson SL, Neurock M, Minteer SD, Baran PS. Science (Washington, D. C.) 2019; 363: 838
  • 57 Kawamata Y, Vantourout JC, Hickey DP, Bai P, Chen L, Hou Q, Qiao W, Barman K, Edwards MA, Garrido-Castro AF, deGruyter JN, Nakamura H, Knouse K, Qin C, Clay KJ, Bao D, Li C, Starr JT, Garcia-Irizarry C, Sach N, White HS, Neurock M, Minteer SD, Baran PS. J. Am. Chem. Soc. 2019; 141: 6392
  • 62 Bard AJ, Faulkner LR. Electrochemical Methods: Fundamentals and Applications. 2nd ed., Wiley; New York 2001
  • 63 Walsh FC. A First Course in Electrochemical Engineering. The Electrochemical Consultancy; Romsey, UK 1993
  • 66 Folgueiras-Amador AA, Wirth T, In: Flow Chemistry: Integrated Approaches for Practical Applications Luis SV, Garcia-Verdugo E. RSC Cambridge 2020; 153-198
  • 67 Ošeka M, Laudadio G, van Leest NP, Dyga M, Bartolomeu AdeA, Gooßen LJ, de Bruin B, de Oliveira KT, Noël T. Chem 2021; 7: 255
  • 82 Cao Y, Adriaenssens B, Bartolomeu AdeA, Laudadio G, de Oliveira KT, Noël T. J. Flow Chem. 2020; 10: 191
  • 93 www.syrris.com/product/asia-electrochemistry-flow-chemistry-system/ (accessed October 2021).
  • 103 www.cambridgereactordesign.com/ammonite/ammonite.html (accessed October 2021).
  • 107 Houston SD, Fahrenhorst-Jones T, Xing H, Chalmers BA, Sykes ML, Stok JE, Farfan Soto C, Burns JM, Bernhardt PV, De Voss JJ, Boyle GM, Smith MT, Tsanaktsidis J, Savage GP, Avery VM, Williams CM. Org. Biomol. Chem. 2019; 17: 6790
  • 108 Chalmers BA, Xing H, Houston S, Clark C, Ghassabian S, Kuo A, Cao B, Reitsma A, Murray CEP, Stok JE, Boyle GM, Pierce CJ, Littler SW, Winkler DA, Bernhardt PV, Pasay C, De Voss JJ, McCarthy J, Parsons PG, Walter GH, Smith MT, Cooper HM, Nilsson SK, Tsanaktsidis J, Savage GP, Williams CM. Angew. Chem. Int. Ed. 2016; 55: 3580
  • 111 www.vapourtec.com/products/flow-reactors/ion-electrochemical-reactor-features/ (accessed October 2021).
  • 126 Seidler J, Bernhard R, Haufe S, Neff C, Gärtner T, Waldvogel SR. Org. Process Res. Dev. 2021; in press;