Yoshikai, N. : 2023 Science of Synthesis, 2022/5: Base-Metal Catalysis 1 DOI: 10.1055/sos-SD-238-00266
Base-Metal Catalysis 1

1.14 Nickel-Catalyzed Directed C—H Functionalization

More Information

Book

Editor: Yoshikai, N.

Authors: Chatani, N. ; Chemler, S. R. ; Chen, P. ; Dai, H.-X. ; Delcaillau, T.; Fujihara, T. ; Huang, J. ; Iwabuchi, Y. ; Kennedy-Ellis, J. J. ; Ko, C.; Koh, M. J. ; Lee, B. C.; Li, Y.; Lin, L.; Liu, G. ; Ma, D. ; Morandi, B. ; Nakao, Y. ; Ouyang, Y. ; Pang, X.; Qing, F.-L. ; Ren, Y. ; Sasano, Y. ; Shang, Y. ; Shou, J.-Y.; Shu, X.-Z. ; Su, W. ; Tobisu, M. ; Wang, C. ; Xiong, T. ; Xu, H.; Yang, F.; Yoshida, T.; Zhu, S.

Title: Base-Metal Catalysis 1

Print ISBN: 9783132453807; Online ISBN: 9783132453821; Book DOI: 10.1055/b000000441

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

This chapter summarizes some selected examples of nickel-catalyzed directed C—H functionalization reactions that involve the activation of a C—H bond as a key step. It is now recognized that nickel complexes, mostly nickel(0) and nickel(II), are some of the most attractive and effective catalysts for the development of C—H functionalization reactions because of the low cost and earth-abundance of nickel, and, most importantly, because the complexes can exist in various oxidation states (+1, +2, +3, and +4) during the transformation, which leads to unique reactivity.

 
  • 1 Rej S, Ano Y, Chatani N. Chem. Rev. 2020; 120: 1788
  • 2 Rogge T, Kaplaneris K, Chatani N, Kim J, Chang S, Punji B, Schafer LL, Musaev DG, Wencel-Delord J, Roberts CA, Sarpong R, Wilson ZE, Brimble MA, Johansson MJ, Ackermann L. Nat. Rev. Methods Primers 2021; 1: 43
  • 3 Liu B, Romine AM, Rubel CZ, Engle KM, Shi B.-F. Chem. Rev. 2021; 121: 14957
  • 4 Mandal R, Garai B, Sundararaju B. ACS Catal. 2022; 12: 3452
  • 5 Moritani I, Fujiwara Y. Tetrahedron Lett. 1967; 1119
  • 6 Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev. 2019; 119: 2192
  • 7 Khake SM, Chatani N. Trends in Chemistry 2019; 1: 524
  • 8 Zhang S.-K, Samanta RC, Del Vecchio A, Ackermann L. Chem.–Eur. J. 2020; 26: 10936
  • 9 Clement ND, Cavell KJ. Angew. Chem. Int. Ed. 2004; 43: 3845
  • 10 Guihaumé J, Halbert S, Eisenstein O, Perutz RN. Organometallics 2012; 31: 1300
  • 11 Wang Y.-X, Qi S.-L, Luan Y.-X, Han X.-W, Wang S, Chen H, Ye M. J. Am. Chem. Soc. 2018; 140: 5360
  • 12 Loup J, Müller V, Ghorai D, Ackermann L. Angew. Chem. Int. Ed. 2019; 58: 1749
  • 13 Khake SM, Chatani N. Chem 2020; 6: 1056
  • 14 Jagtap RA, Punji B. Chem. Rec. 2021; 21: 3573
  • 15 Mantry L, Maayuri R, Kumar V, Gandeepan P. Beilstein J. Org. Chem. 2021; 17: 2209
  • 16 Primer DN, Molander GA. Science of Synthesis: Dual Catalysis in Organic Synthesis 2019; 1: 241
  • 17 Shiota H, Ano Y, Aihara Y, Fukumoto Y, Chatani N. J. Am. Chem. Soc. 2011; 133: 14952
  • 18 Omer HM, Liu P. ACS Omega 2019; 4: 5209
  • 19 Aihara Y, Chatani N. J. Am. Chem. Soc. 2013; 135: 5308
  • 20 Song W, Lackner S, Ackermann L. Angew. Chem. Int. Ed. 2014; 53: 2477
  • 21 Wu X, Zhao Y, Ge H. J. Am. Chem. Soc. 2014; 136: 1789 J. Am. Chem. Soc. 2015; 137: 2785
  • 22 Shi W.-Y, Ding Y.-N, Zheng N, Gou X.-Y, Zhang Z, Chen X, Luan Y.-Y, Niu Z.-J, Liang Y.-M. Chem. Commun. (Cambridge) 2021; 57: 8945
  • 23 Yokota A, Aihara Y, Chatani N. J. Org. Chem. 2014; 79: 11922
  • 24 Aihara Y, Chatani N. J. Am. Chem. Soc. 2014; 136: 898
  • 25 Iyanaga M, Aihara Y, Chatani N. J. Org. Chem. 2014; 79: 11933
  • 26 Omer HM, Liu P. J. Am. Chem. Soc. 2017; 139: 9909
  • 27 Singh S, Surya K , Sunoj RB. J. Org. Chem. 2017; 82: 9619
  • 28 Li Y, Zou L, Bai R, Lan Y. Org. Chem. Front. 2018; 5: 615
  • 29 Misal Castro LC, Chatani N. Chem. Lett. 2015; 44: 410
  • 30 Liu J, Johnson SA. Organometallics 2021; 40: 2970
  • 31 Liu Y.-J, Liu Y.-H, Yan S.-Y, Shi B.-F. Chem. Commun. (Cambridge) 2015; 51: 6388
  • 32 Aihara Y, Tobisu M, Fukumoto Y, Chatani N. J. Am. Chem. Soc. 2014; 136: 15509
  • 33 Yan Q, Chen Z, Yu W, Yin H, Liu Z, Zhang Y. Org. Lett. 2015; 17: 2482
  • 34 Zhang S.-K, Samanta RC, Sauermann N, Ackermann L. Chem.–Eur. J. 2018; 24: 19166
  • 35 Obata A, Ano Y, Chatani N. Chem. Sci. 2017; 8: 6650
  • 36 Yamazaki K, Obata A, Sasagawa A, Ano Y, Chatani N. Organometallics 2019; 38: 248
  • 37 Zhang X, Zhao Q, Fan J.-Q, Chen D.-Z, Liu J.-B. Org. Chem. Front. 2019; 6: 618
  • 38 Song W, Ackermann L. Chem. Commun. (Cambridge) 2013; 49: 6638
  • 39 Ruan Z, Lackner S, Ackermann L. Angew. Chem. Int. Ed. 2016; 55: 3153
  • 40 Soni V, Jagtap RA, Gonnade RG, Punji B. ACS Catal. 2016; 6: 5666
  • 41 Pandey DK, Ankade SB, Ali A, Vinod CP, Punji B. Chem. Sci. 2019; 10: 9493
  • 42 Kleinman JP, Dubeck M. J. Am. Chem. Soc. 1963; 85: 1544
  • 43 Cope AC, Siekman RW. J. Am. Chem. Soc. 1965; 87: 3272
  • 44 Roy P, Bour JR, Kampf JW, Sanford MS. J. Am. Chem. Soc. 2019; 141: 17382 J. Am. Chem. Soc. 2021; 143: 14021
  • 45 He Z, Huang Y. ACS Catal. 2016; 6: 7814
  • 46 Zhang S.-K, Struwe J, Hu L, Ackermann L. Angew. Chem. Int. Ed. 2020; 59: 3178