Yoshikai, N. : 2023 Science of Synthesis, 2023/3: Base-Metal Catalysis 2 DOI: 10.1055/sos-SD-239-00021
Base-Metal Catalysis 2

2.4 C—H Functionalization Catalyzed by Cobalt(III)/Cp* and Related Complexes

More Information

Book

Editor: Yoshikai, N.

Authors: Adak, L. ; Aoki, S.; Banerjee, S. ; Bedford, R. B. ; Cheng, Z.; Costas, M. ; Gao, M.; Garai, B.; Ge, S. ; Gosmini, C. ; Hota, S. K.; Ilies, L. ; Jindal, A.; Kawanaka, Y.; Li, H. ; Li, M.; Liu, Q. ; Lu, Z. ; Mandal, R.; Matsunaga, S. ; Murarka, S. ; Nakamura, M. ; Nolla-Saltiel, R. ; Ollevier, T. ; Palone, A. ; Panda, S. P.; Sahoo, S.; Sang, J.; Schiltz, P.; Shenvi, R. A. ; Sundararaju, B. ; van der Puyl, V. ; Vicens, L. ; Wang, C. ; Wang, Y. ; Yang, X.; Yang, Y.; Yoshikai, N. ; Yoshino, T. ; Zeng, X. ; Zhang, G.

Title: Base-Metal Catalysis 2

Print ISBN: 9783132455030; Online ISBN: 9783132455054; Book DOI: 10.1055/b000000440

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

Cobalt(III) catalysts bearing a pentamethylcyclopentadienyl ligand are widely used for directing-group-assisted C—H functionalization reactions to form C—C and C—heteroatom bonds. This review describes representative examples of such cobalt(III)-catalyzed C—H functionalization reactions, including C(sp2) —H and C(sp3) —H functionalization, as well as enantioselective C—H functionalization.

 
  • 1 Yoshino T, Ikemoto H, Matsunaga S, Kanai M. Angew. Chem. Int. Ed. 2013; 52: 2207
  • 2 Moselage M, Li J, Ackermann L. ACS Catal. 2016; 6: 498
  • 3 Chirila PG, Whiteoak CJ. Dalton Trans. 2017; 46: 9721
  • 4 Wang S, Chen S.-Y, Yu X.-Q. Chem. Commun. (Cambridge) 2017; 53: 3165
  • 5 Yoshino T, Matsunaga S. Adv. Synth. Catal. 2017; 359: 1245
  • 6 Baccalini A, Vergura S, Dolui P, Zanoni G, Maiti D. Org. Biomol. Chem. 2019; 17: 10119
  • 7 Satoh T, Miura M. Chem.–Eur. J. 2010; 16: 11212
  • 8 Kuhl N, Schröder N, Glorius F. Adv. Synth. Catal. 2014; 356: 1443
  • 9 Song G, Li X. Acc. Chem. Res. 2015; 48: 1007
  • 10 Park J, Chang S. Chem.–Asian J. 2018; 13: 1089
  • 11 Peneau A, Guillou C, Chabaud L. Eur. J. Org. Chem. 2018; 5777
  • 12 Piou T, Rovis T. Acc. Chem. Res. 2018; 51: 170
  • 13 Boerth JA, Maity S, Williams SK, Mercado BQ, Ellman JA. Nat. Catal. 2018; 1: 673
  • 14 Zell D, Bursch M, Müller V, Grimme S, Ackermann L. Angew. Chem. Int. Ed. 2017; 56: 10378
  • 15 Pesciaioli F, Dhawa U, Oliveira JCA, Yin R, John M, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 15425
  • 16 Liu Y.-H, Xie P.-P, Liu L, Fan J, Zhang Z.-Z, Hong X, Shi B.-F. J. Am. Chem. Soc. 2021; 143: 19112
  • 17 Friis SD, Johansson MJ, Ackermann L. Nat. Chem. 2020; 12: 511
  • 18 Gensch T, Vásquez-Céspedes S, Yu D.-G, Glorius F. Org. Lett. 2015; 17: 3714
  • 19 Kawai K, Bunno Y, Yoshino T, Matsunaga S. Chem.–Eur. J. 2018; 24: 10231
  • 20 Moselage M, Sauermann N, Koeller J, Liu W, Gelman D, Ackermann L. Synlett 2015; 26: 1596
  • 21 Suzuki Y, Sun B, Sakata K, Yoshino T, Matsunaga S, Kanai M. Angew. Chem. Int. Ed. 2015; 54: 9944
  • 22 Bunno Y, Murakami N, Suzuki Y, Kanai M, Yoshino T, Matsunaga S. Org. Lett. 2016; 18: 2216
  • 23 Kalsi D, Laskar RA, Barsu N, Premkumar JR, Sundararaju B. Org. Lett. 2016; 18: 4198
  • 24 Zell D, Bu Q, Feldt M, Ackermann L. Angew. Chem. Int. Ed. 2016; 55: 7408
  • 25 Ikemoto H, Yoshino T, Sakata K, Matsunaga S, Kanai M. J. Am. Chem. Soc. 2014; 136: 5424
  • 26 Tanaka R, Ikemoto H, Kanai M, Yoshino T, Matsunaga S. Org. Lett. 2016; 18: 5732
  • 27 Wang S, Hou J.-T, Feng M.-L, Zhang X.-Z, Chen S.-Y, Yu X.-Q. Chem. Commun. (Cambridge) 2016; 52: 2709
  • 28 Sen M, Rajesh N, Emayavaramban B, Premkumar JR, Sundararaju B. Chem.–Eur. J. 2018; 24: 342
  • 29 Bera SS, Debbarma S, Ghosh AK, Chand S, Maji MS. J. Org. Chem. 2017; 82: 420
  • 30 Park J, Chang S. Angew. Chem. Int. Ed. 2015; 54: 14103
  • 31 Liang Y, Liang Y.-F, Tang C, Yuan Y, Jiao N. Chem.–Eur. J. 2015; 21: 16395
  • 32 Mei R, Loup J, Ackermann L. ACS Catal. 2016; 6: 793
  • 33 Yu D.-G, Gensch T, de Azambuja F, Vásquez-Céspedes S, Glorius F. J. Am. Chem. Soc. 2014; 136: 17722
  • 34 Pawar AB, Lade DM. Org. Biomol. Chem. 2016; 14: 3275
  • 35 Gensch T, Klauck FJ, Glorius F. Angew. Chem. Int. Ed. 2016; 55: 11287
  • 36 Sun B, Yoshino T, Kanai M, Matsunaga S. Angew. Chem. Int. Ed. 2015; 54: 12968
  • 37 Wang H, Koeller J, Liu W, Ackermann L. Chem.–Eur. J. 2015; 21: 15525
  • 38 Sen M, Kalsi D, Sundararaju B. Chem.–Eur. J. 2015; 21: 15529
  • 39 Lerchen A, Vásquez-Céspedes S, Glorius F. Angew. Chem. Int. Ed. 2016; 55: 3208
  • 40 Zhou S, Wang J, Wang L, Chen K, Song C, Zhu J. Org. Lett. 2016; 18: 3806
  • 41 Lu Q, Vásquez-Céspedes S, Gensch T, Glorius F. ACS Catal. 2016; 6: 2352
  • 42 Zhang Z.-Z, Liu B, Xu J.-W, Yan S.-Y, Shi B.-F. Org. Lett. 2016; 18: 1776
  • 43 Lade DM, Pawar AB. Org. Chem. Front. 2016; 3: 836
  • 44 Yu W, Zhang W, Liu Y, Zhou Y, Liu Z, Zhang Y. RSC Adv. 2016; 6: 24768
  • 45 Huang J, Huang Y, Wang T, Huang Q, Wang Z, Chen Z. Org. Lett. 2017; 19: 1128
  • 46 Ozols K, Jang Y.-S, Cramer N. J. Am. Chem. Soc. 2019; 141: 5675
  • 47 Sen M, Emayavaramban B, Barsu N, Premkumar JR, Sundararaju B. ACS Catal. 2016; 6: 2792
  • 48 Barsu N, Rahman MA, Sen M, Sundararaju B. Chem.–Eur. J. 2016; 22: 9135
  • 49 Tan PW, Mak AM, Sullivan MB, Dixon DJ, Seayad J. Angew. Chem. Int. Ed. 2017; 56: 16550
  • 50 Fukagawa S, Kato Y, Tanaka R, Kojima M, Yoshino T, Matsunaga S. Angew. Chem. Int. Ed. 2019; 58: 1153
  • 51 Sekine D, Ikeda K, Fukagawa S, Kojima M, Yoshino T, Matsunaga S. Organometallics 2019; 38: 3921
  • 52 Lee J, Lee J, Jung H, Kim D, Park J, Chang S. J. Am. Chem. Soc. 2020; 142: 12324
  • 53 Lee J, Jin S, Kim D, Hong SH, Chang S. J. Am. Chem. Soc. 2021; 143: 5191