2.6 C—H Functionalization Catalyzed by Low-Valent Cobalt
Buch
Herausgeber: Yoshikai, N.
Titel: Base-Metal Catalysis 2
Print ISBN: 9783132455030; Online ISBN: 9783132455054; Buch-DOI: 10.1055/b000000440
1st edition © 2023 Thieme. All rights reserved.
Georg Thieme Verlag KG, Stuttgart
Fachgebiete: Organische Chemie;Chemische Reaktionen, Katalyse;Organometallchemie;Chemische Labormethoden, Stöchiometrie
Science of Synthesis Reference Libraries
Übergeordnete Publikation
Titel: Science of Synthesis
DOI: 10.1055/b-00000101
Reihenherausgeber: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.
Typ: Mehrbändiges Werk
Abstract


This review summarizes representative examples of catalytic C—H functionalization reactions mediated by low-valent cobalt complexes. Catalysts generated by the reduction of cobalt(II) or cobalt(III) precatalysts in the presence of appropriate supporting ligands have been demonstrated to promote a variety of alkylation, alkenylation, and arylation reactions of aromatic C(sp2)—H bonds, often with the assistance of directing groups. Well-defined cobalt(0) and cobalt(–I) complexes have also proved to catalyze some of these reactions. Low-valent cobalt complexes supported by bis(phosphinomethyl)pyridine, terpyridine, and diimine ligands have been identified as viable catalysts for the borylation of C(sp2)—H and C(sp3)—H bonds, where the cobalt catalysts exhibit unique site selectivity compared with well-established iridium catalysts. Other reactions such as 1,4-cobalt migration, hydroacylation, and C—H activation involving cobaltacyclopentene intermediates are also discussed.
Schlüsselwörter
base-metal catalysis - cobalt catalysis - C—H functionalization - C—H activation - C—H alkylation - C—H alkenylation - C—H arylation - C—H borylation - C—H carboxylation - hydroacylation - metal migration - directing groups- 7 Mei R, Dhawa U, Samanta RC, Ma W, Wencel-Delord J, Ackermann L. ChemSusChem 2020; 13: 3306
MissingFormLabel
- 14 Fallon BJ, Derat E, Amatore M, Aubert C, Chemla F, Ferreira F, Perez-Luna A, Petit M. J. Am. Chem. Soc. 2015; 137: 2448
MissingFormLabel
- 15 Fallon BJ, Garsi JB, Derat E, Amatore M, Aubert C, Petit M. ACS Catal. 2015; 5: 7493
MissingFormLabel
- 16 Fallon BJ, Derat E, Amatore M, Aubert C, Chemla F, Ferreira F, Perez-Luna A, Petit M. Org. Lett. 2016; 18: 2292
MissingFormLabel
- 19 Wang C.-S, Di Monaco S, Thai AN, Rahman MS, Pang BP, Wang C, Yoshikai N. J. Am. Chem. Soc. 2020; 142: 12878
MissingFormLabel
- 20 Wu J, Gao W.-X, Huang X.-B, Zhou Y.-B, Liu M.-C, Wu H.-Y. Org. Chem. Front. 2021; 8: 6048
MissingFormLabel
- 23 Moselage M, Sauermann N, Richter SC, Ackermann L. Angew. Chem. Int. Ed. 2015; 54: 6352
MissingFormLabel
- 24 Sauermann N, Loup J, Kootz D, Yatham VR, Berkessel A, Ackermann L. Synthesis 2017; 49: 3476
MissingFormLabel
- 32 Jacob N, Zaid Y, Oliveira JCA, Ackermann L, Wencel-Delord J. J. Am. Chem. Soc. 2022; 144: 798
MissingFormLabel
- 33 Li B, Wu Z.-H, Gu Y.-F, Sun C.-L, Wang B.-Q, Shi Z.-J. Angew. Chem. Int. Ed. 2011; 50: 1109
MissingFormLabel
- 48 Yang J, Rérat A, Lim YJ, Gosmini C, Yoshikai N. Angew. Chem. Int. Ed. 2017; 56: 2449
MissingFormLabel
- 55 Whyte A, Torelli A, Mirabi B, Prieto L, Rodriguez JF, Lautens M. J. Am. Chem. Soc. 2020; 142: 9510
MissingFormLabel
- 72 Mkhalid IAI, Barnard JH, Marder TB, Murphy JM, Hartwig JF. Chem. Rev. 2010; 110: 890
MissingFormLabel
- 75 Obligacion JV, Semproni SP, Pappas I, Chirik PJ. J. Am. Chem. Soc. 2016; 138: 10645
MissingFormLabel