Yoshikai, N. : 2023 Science of Synthesis, 2023/3: Base-Metal Catalysis 2 DOI: 10.1055/sos-SD-239-00077
Base-Metal Catalysis 2

2.2 Cobalt- and Iron-Catalyzed Hydrosilylation

More Information

Book

Editor: Yoshikai, N.

Authors: Adak, L. ; Aoki, S.; Banerjee, S. ; Bedford, R. B. ; Cheng, Z.; Costas, M. ; Gao, M.; Garai, B.; Ge, S. ; Gosmini, C. ; Hota, S. K.; Ilies, L. ; Jindal, A.; Kawanaka, Y.; Li, H. ; Li, M.; Liu, Q. ; Lu, Z. ; Mandal, R.; Matsunaga, S. ; Murarka, S. ; Nakamura, M. ; Nolla-Saltiel, R. ; Ollevier, T. ; Palone, A. ; Panda, S. P.; Sahoo, S.; Sang, J.; Schiltz, P.; Shenvi, R. A. ; Sundararaju, B. ; van der Puyl, V. ; Vicens, L. ; Wang, C. ; Wang, Y. ; Yang, X.; Yang, Y.; Yoshikai, N. ; Yoshino, T. ; Zeng, X. ; Zhang, G.

Title: Base-Metal Catalysis 2

Print ISBN: 9783132455030; Online ISBN: 9783132455054; Book DOI: 10.1055/b000000440

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

The hydrosilylation of readily available alkenes and alkynes represents an atom-economic and straightforward method for the preparation of value-added organosilicon compounds. Among various catalysts, those based on earth-abundant metals such as cobalt and iron demonstrate great potential due to their low cost and toxicity, as well as good catalytic performance. This review discusses recent progress in the cobalt- and iron-catalyzed hydrosilylation of alkenes and alkynes, as well as the sequential double hydrosilylation of alkynes, with an emphasis on the synthetic utility of the methods. The reactivity, regioselectivity, and enantioselectivity can be well-controlled by applying suitable ligands.

 
  • 3 Markó IE, Stérin S, Buisine O, Mignani G, Branlard P, Tinant B, Declercq J.-P. Science (Washington, D. C.) 2002; 298: 204
  • 5 Pagliaro M, Ciriminna R, Pandarus V, Béland F. Eur. J. Org. Chem. 2013; 6227
  • 20 Trost BM, Ball ZT. Synthesis 2005; 853
  • 25 Kuai C.-S, Ji D.-W, Zhao C.-Y, Liu H, Hu Y.-C, Chen Q.-A. Angew. Chem. Int. Ed. 2020; 59: 19115
  • 33 Nesmeyanov AN, Freidlina RK, Chukovskaya EC, Petrova RG, Belyavsky AB. Tetrahedron 1962; 17: 61
  • 38 Tondreau AM, Atienza CCH, Weller KJ, Nye SA, Lewis KM, Delis JGP, Chirik PJ. Science (Washington, D. C.) 2012; 335: 567
  • 41 Challinor AJ, Calin M, Nichol GS, Carter NB, Thomas SP. Adv. Synth. Catal. 2016; 358: 2404
  • 44 Peng D, Zhang Y, Du X, Zhang L, Leng X, Walter MD, Huang Z. J. Am. Chem. Soc. 2013; 135: 19154
  • 57 Hu M.-Y, He Q, Fan S.-J, Wang Z.-C, Liu L.-Y, Mu Y.-J, Peng Q, Zhu S.-F. Nat. Commun. 2018; 9: 221
  • 75 Hu M.-Y, He P, Qiao T.-Z, Sun W, Li W.-T, Lian J, Li J.-H, Zhu S.-F. J. Am. Chem. Soc. 2020; 142: 16894
  • 80 Ding S, Song L.-J, Wang Y, Zhang X, Chung LW, Wu Y.-D, Sun J. Angew. Chem. Int. Ed. 2015; 54: 5632