Yoshikai, N. : 2023 Science of Synthesis, 2023/3: Base-Metal Catalysis 2 DOI: 10.1055/sos-SD-239-00093
Base-Metal Catalysis 2

2.3 Cobalt- and Iron-Catalyzed Hydroboration

More Information

Book

Editor: Yoshikai, N.

Authors: Adak, L. ; Aoki, S.; Banerjee, S. ; Bedford, R. B. ; Cheng, Z.; Costas, M. ; Gao, M.; Garai, B.; Ge, S. ; Gosmini, C. ; Hota, S. K.; Ilies, L. ; Jindal, A.; Kawanaka, Y.; Li, H. ; Li, M.; Liu, Q. ; Lu, Z. ; Mandal, R.; Matsunaga, S. ; Murarka, S. ; Nakamura, M. ; Nolla-Saltiel, R. ; Ollevier, T. ; Palone, A. ; Panda, S. P.; Sahoo, S.; Sang, J.; Schiltz, P.; Shenvi, R. A. ; Sundararaju, B. ; van der Puyl, V. ; Vicens, L. ; Wang, C. ; Wang, Y. ; Yang, X.; Yang, Y.; Yoshikai, N. ; Yoshino, T. ; Zeng, X. ; Zhang, G.

Title: Base-Metal Catalysis 2

Print ISBN: 9783132455030; Online ISBN: 9783132455054; Book DOI: 10.1055/b000000440

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

The hydroboration reaction provides a highly practical and straightforward approach to access organoboron compounds. In modern synthetic chemistry, catalysts based on abundant transition metals such as cobalt and iron have been widely employed in this transformation. This chapter summarizes some selected recent examples of cobalt- and iron-catalyzed hydroboration reactions of unsaturated organic molecules, such as alkenes, alkynes, dienes, diynes, enynes, ketones, and nitriles, with an emphasis on the control of chemo-, regio-, and stereoselectivity.

 
  • 1 Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
  • 2 Miyaura N. Bull. Chem. Soc. Jpn. 2008; 81: 1535
  • 3 Science of Synthesis Advances in Organoboron Chemistry towards Organic Synthesis. Fernández E. Thieme; Stuttgart 2019
  • 4 Burgess K, Ohlmeyer MJ. Chem. Rev. 1991; 91: 1179
  • 5 Mao L, Rose SK. Adv. Synth. Catal. 2020; 362: 4174
  • 6 Rej S, Das A, Panda TK. Adv. Synth. Catal. 2021; 363: 4818
  • 7 Obligacion JV, Chirik PJ. Nat. Rev. Chem. 2018; 2: 15
  • 8 Tamang SR, Findlater M. Molecules 2019; 24: 3194
  • 9 Guo J, Cheng Z, Chen J, Chen X, Lu Z. Acc. Chem. Res. 2021; 54: 2701
  • 10 Haberberger M, Enthaler S. Chem.–Asian J. 2013; 8: 50
  • 11 González MJ, Bauer F, Breit B. Org. Lett. 2021; 23: 8199
  • 12 Obligacion JV, Neely JM, Yazdani AN, Pappas I, Chirik PJ. J. Am. Chem. Soc. 2015; 137: 5855
  • 13 Gorgas N, Alves LG, Stöger B, Martins AM, Veiros LF, Kirchner K. J. Am. Chem. Soc. 2017; 139: 8130
  • 14 Blasius CK, Vasilenko V, Matveeva R, Wadepohl H, Gade LH. Angew. Chem. Int. Ed. 2020; 59: 23010
  • 15 Chen J, Shen X, Lu Z. Angew. Chem. Int. Ed. 2021; 60: 690
  • 16 Zhang L, Peng D, Leng X, Huang Z. Angew. Chem. Int. Ed. 2013; 52: 3676
  • 17 Zhang L, Zuo Z, Leng X, Huang Z. Angew. Chem. Int. Ed. 2014; 53: 2696
  • 18 Zhang L, Zuo Z, Wan X, Huang Z. J. Am. Chem. Soc. 2014; 136: 15501
  • 19 Chen J, Xi T, Lu Z. Org. Lett. 2014; 16: 6452
  • 20 Chen X, Cheng Z, Lu Z. ACS Catal. 2019; 9: 4025
  • 21 Obligacion JV, Chirik PJ. J. Am. Chem. Soc. 2013; 135: 19107
  • 22 Chen X, Cheng Z, Guo J, Lu Z. Nat. Commun. 2018; 9: 3939
  • 23 Wu JY, Moreau B, Ritter T. J. Am. Chem. Soc. 2009; 131: 12915
  • 24 Duvvuri K, Dewese KR, Parsutkar MM, Jing SM, Mehta MM, Gallucci JC, RajanBabu TV. J. Am. Chem. Soc. 2019; 141: 7365
  • 25 Li C, Yang Z, Wang L, Guo Y, Huang Z, Ma S. Angew. Chem. Int. Ed. 2020; 59: 6278
  • 26 Wu C, Ge S. Chem. Sci. 2020; 11: 2783
  • 27 Yang Y, Zeng J.-H, Zhan Z.-P. Org. Chem. Front. 2021; 8: 2537
  • 28 Sang HL, Wu C, Phua GGD, Ge S. ACS Catal. 2019; 9: 10109
  • 29 Guo J, Chen J, Lu Z. Chem. Commun. (Cambridge) 2015; 51: 5725
  • 30 Ren X, Lu Z. Org. Lett. 2021; 23: 8370
  • 31 Blasius CK, Heinrich NF, Vasilenko V, Gade LH. Angew. Chem. Int. Ed. 2020; 59: 15974
  • 32 Zhang F, Song H, Zhuang X, Tung C.-H, Wang W. J. Am. Chem. Soc. 2017; 139: 17775
  • 33 Yu H.-C, Islam SM, Mankad NP. ACS Catal. 2020; 10: 3670
  • 34 Ibrahim AD, Entsminger SW, Fout AR. ACS Catal. 2017; 7: 3730
  • 35 Ito M, Itazaki M, Nakazawa H. Inorg. Chem. 2017; 56: 13709
  • 36 Zuo Z, Huang Z. Org. Chem. Front. 2016; 3: 434
  • 37 Hu M, Ge S. Nat. Commun. 2020; 11: 765
  • 38 Guo J, Cheng B, Shen X, Lu Z. J. Am. Chem. Soc. 2017; 139: 15316
  • 39 You Y, Ge S. Angew. Chem. Int. Ed. 2021; 60: 20684
  • 40 Wang C, Ge S. J. Am. Chem. Soc. 2018; 140: 10687
  • 41 Wu C, Liao J, Ge S. Angew. Chem. Int. Ed. 2019; 58: 8882