2.8 Iron-Catalyzed C—H Functionalization
Buch
Herausgeber: Yoshikai, N.
Titel: Base-Metal Catalysis 2
Print ISBN: 9783132455030; Online ISBN: 9783132455054; Buch-DOI: 10.1055/b000000440
1st edition © 2023 Thieme. All rights reserved.
Georg Thieme Verlag KG, Stuttgart
Fachgebiete: Organische Chemie;Chemische Reaktionen, Katalyse;Organometallchemie;Chemische Labormethoden, Stöchiometrie
Science of Synthesis Reference Libraries
Übergeordnete Publikation
Titel: Science of Synthesis
DOI: 10.1055/b-00000101
Reihenherausgeber: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.
Typ: Mehrbändiges Werk
Abstract


The direct functionalization of an organic substrate via transition-metal-catalyzed C—H bond activation is a powerful tool for building molecular complexity. Despite the abundance, low cost, and low toxicity of iron, which make it an ideal metal for sustainable catalysis, iron-catalyzed C—H activation has been less investigated compared with catalysis based on precious metals such as palladium or iridium. In this chapter, selected examples of iron-catalyzed activation of a C—H bond to create a new C—C bond are described. Arylation, hetarylation, alkenylation, and alkylation of C(sp2)—H and C(sp3)—H bonds is discussed. Most of the substrates require a directing group, but several examples of non-directed reactions are also presented. The functionalization of a C—H bond has been achieved by using organometallic reagents, organic halides and pseudohalides, multiple bonds such as alkenes and alkynes, and arenes or hetarenes as the reaction partner.
Schlüsselwörter
C—H activation - C—H functionalization - C—C bond formation - iron catalysis - arylation - alkenylation - alkylation - directing group - bipyridine ligands - phosphine ligands - NHC ligands - organometallic reagents - alkyl halides - alkenes - alkynes - arenes - hetarenes- 2 C-H Bond Activation and Catalytic Functionalization. Dixneuf PH, Doucet H. Springer; Berlin 2016. Topics in Organometallic Chemistry
MissingFormLabel
- 4 Iron Catalysis in Organic Chemistry: Reactions and Applications. Plietker B. Wiley-VCH; Weinheim, Germany 2008
MissingFormLabel
- 5 The Chemistry of Organoiron Compounds. Marek I, Rappoport Z. Wiley; Chichester, U. K. 2014
MissingFormLabel
- 13 Boddie TE, Carpenter SH, Baker TM, DeMuth JC, Cera G, Brennessel WW, Ackermann L, Neidig ML. J. Am. Chem. Soc. 2019; 141: 12338
MissingFormLabel
- 15 Sun Y, Tang H, Chen K, Hu L, Yao J, Shaik S, Chen H. J. Am. Chem. Soc. 2016; 138: 3715
MissingFormLabel
- 19 Norinder J, Matsumoto A, Yoshikai N, Nakamura E. J. Am. Chem. Soc. 2008; 130: 5858
MissingFormLabel
- 20 Yoshikai N, Matsumoto A, Norinder J, Nakamura E. Angew. Chem. Int. Ed. 2009; 48: 2925
MissingFormLabel
- 21 Gu Q, Al Mamari HH, Graczyk K, Diers E, Ackermann L. Angew. Chem. Int. Ed. 2014; 53: 3868
MissingFormLabel
- 25 Ilies L, Kobayashi M, Matsumoto A, Yoshikai N, Nakamura E. Adv. Synth. Catal. 2012; 354: 593
MissingFormLabel
- 30 Mo J, Messinis AM, Oliveira JCA, Demeshko S, Meyer F, Ackermann L. ACS Catal. 2021; 11: 1053
MissingFormLabel
- 33 Ilies L, Matsubara T, Ichikawa S, Asako S, Nakamura E. J. Am. Chem. Soc. 2014; 136: 13126
MissingFormLabel
- 37 Loup J, Zell D, Oliveira JCA, Keil H, Stalke D, Ackermann L. Angew. Chem. Int. Ed. 2017; 56: 14197
MissingFormLabel
- 38 Ilies L, Zhou Y, Yang H, Matsubara T, Shang R, Nakamura E. ACS Catal. 2018; 8: 11478
MissingFormLabel
- 41 Kimura N, Katta S, Kitazawa Y, Kochi T, Kakiuchi F. J. Am. Chem. Soc. 2021; 143: 4543
MissingFormLabel