Yoshikai, N. : 2023 Science of Synthesis, 2023/3: Base-Metal Catalysis 2 DOI: 10.1055/sos-SD-239-00273
Base-Metal Catalysis 2

2.5 Cobalt-Catalyzed Bidentate-Chelation-Assisted C—H Functionalization

Weitere Informationen

Buch

Herausgeber: Yoshikai, N.

Autoren: Adak, L. ; Aoki, S.; Banerjee, S. ; Bedford, R. B. ; Cheng, Z.; Costas, M. ; Gao, M.; Garai, B.; Ge, S. ; Gosmini, C. ; Hota, S. K.; Ilies, L. ; Jindal, A.; Kawanaka, Y.; Li, H. ; Li, M.; Liu, Q. ; Lu, Z. ; Mandal, R.; Matsunaga, S. ; Murarka, S. ; Nakamura, M. ; Nolla-Saltiel, R. ; Ollevier, T. ; Palone, A. ; Panda, S. P.; Sahoo, S.; Sang, J.; Schiltz, P.; Shenvi, R. A. ; Sundararaju, B. ; van der Puyl, V. ; Vicens, L. ; Wang, C. ; Wang, Y. ; Yang, X.; Yang, Y.; Yoshikai, N. ; Yoshino, T. ; Zeng, X. ; Zhang, G.

Titel: Base-Metal Catalysis 2

Print ISBN: 9783132455030; Online ISBN: 9783132455054; Buch-DOI: 10.1055/b000000440

Fachgebiete: Organische Chemie;Chemische Reaktionen, Katalyse;Organometallchemie;Chemische Labormethoden, Stöchiometrie

Science of Synthesis Reference Libraries



Übergeordnete Publikation

Titel: Science of Synthesis

DOI: 10.1055/b-00000101

Reihenherausgeber: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Typ: Mehrbändiges Werk

 


R. Mandal; B. Garai; B. Sundararaju

Abstract

Zoom

C—H bond functionalization catalyzed by high-valent-cobalt species with the aid of bidentate chelation has come a long way since the pioneering report by Daugulis almost a decade ago. Further study of the reaction mechanisms revealed that stoichiometric amounts of metal salts could be replaced with photocatalysts or electricity as one-electron oxidants, and approaches based on these strategies can be considered more environmentally friendly than the initially developed catalytic systems. Systematic investigations have led to a better understanding of the coordination environment of the in-situ-formed cobaltacycle, and this has led to the development of external chiral ligands for cobalt-catalyzed asymmetric C—H functionalizations. This review is a comprehensive summary of the documented methods for cobalt-catalyzed, bidentate-chelation-assisted C—H bond functionalizations as of early 2023.

 
  • 2 Yamaguchi J, Yamaguchi AD. Angew. Chem. Int. Ed. 2012; 51: 8960
  • 3 Zhang M, Zhang Y, Jie X, Zhao H, Li G, Su W. Org. Chem. Front. 2014; 1: 843
  • 4 Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BUW, Schnürch M. Chem. Soc. Rev. 2018; 47: 6603
  • 5 Baccalini A, Vergura S, Dolui P, Zanoni G, Maiti D. Org. Biomol. Chem. 2019; 17: 10119
  • 9 Grigorjeva L, Daugulis O. Angew. Chem. Int. Ed. 2014; 53: 10209
  • 12 Yoshino T, Ikemoto H, Matsunaga S, Kanai M. Angew. Chem. Int. Ed. 2013; 52: 2207
  • 13 Sun B, Yoshino T, Matsunaga S, Kanai M. Adv. Synth. Catal. 2014; 356: 1491
  • 14 Lukasevics L, Cizikovs A, Grigorjeva L. Chem. Commun. (Cambridge) 2021; 57: 10827
  • 17 Ram Bajya K, Selvakumar S. Eur. J. Org. Chem. 2022; e202 200 229
  • 18 Chakraborty P, Mandal R, Paira S, Sundararaju B. Chem. Commun. (Cambridge) 2021; 57: 13075
  • 19 Zhong J, Yu Y, Zhang D, Ye K. Chin. Chem. Lett. 2021; 32: 963
  • 20 Sauermann N, Meyer TH, Ackermann L. Chem.–Eur. J. 2018; 24: 16209
  • 23 Planas O, Whiteoak CJ, Company A, Ribas X. Adv. Synth. Catal. 2015; 357: 4003
  • 24 Nguyen TT, Grigorjeva L, Daugulis O. ACS Catal. 2016; 6: 551
  • 25 Zhang J, Chen H, Lin C, Liu Z, Wang C, Zhang Y. J. Am. Chem. Soc. 2015; 137: 12990
  • 27 Manoharan R, Jeganmohan M. Org. Biomol. Chem. 2018; 16: 8384
  • 29 Kumon T, Wu J, Shimada M, Agou T, Fukumoto H, Kubota T, Hammond GB, Konno T. J. Org. Chem. 2021; 86: 5183
  • 30 Muniraj N, Kumar A, Prabhu KR. Adv. Synth. Catal. 2020; 362: 152
  • 32 Zhang L.-B, Hao X.-Q, Liu Z.-J, Zheng X.-X, Zhang S.-K, Niu J.-L, Song M.-P. Angew. Chem. Int. Ed. 2015; 54: 10012
  • 33 Wang Y, Du C, Wang Y, Guo X, Fang L, Song M.-P, Niu J.-L, Wei D. Adv. Synth. Catal. 2018; 360: 2668
  • 34 Mei R, Wang H, Warratz S, Macgregor SA, Ackermann L. Chem.–Eur. J. 2016; 22: 6759
  • 35 Hao X.-Q, Du C, Zhu X, Li P.-X, Zhang J.-H, Niu J.-L, Song M.-P. Org. Lett. 2016; 18: 3610
  • 36 Kuai C, Wang L, Li B, Yang Z, Cui X. Org. Lett. 2017; 19: 2102
  • 37 Martínez ÁM, Rodríguez N, Gómez-Arrayás R, Carretero JC. Chem.–Eur. J. 2017; 23: 11669
  • 38 Ling F, Xie Z, Chen J, Ai C, Shen H, Wang Z, Yi X, Zhong W. Adv. Synth. Catal. 2019; 361: 3094
  • 39 Yao Y, Lin Q, Yang W, Yang W, Gu F, Guo W, Yang D. Chem.–Eur. J. 2020; 26: 5607
  • 40 Bolsakova J, Lukasevics L, Grigorjeva L. J. Org. Chem. 2020; 85: 4482
  • 41 Wang S, Yao L, Wang J.-S, Ying J, Wu X.-F. Mol. Catal. 2022; 524: 112303
  • 42 Zhai S, Qiu S, Chen X, Wu J, Zhao H, Tao C, Li Y, Cheng B, Wang H, Zhai H. Chem. Commun. (Cambridge) 2018; 54: 98
  • 44 Liu M, Niu J.-L, Yang D, Song M.-P. J. Org. Chem. 2020; 85: 4067
  • 45 Li X.-C, Du C, Zhang H, Niu J.-L, Song M.-P. Org. Lett. 2019; 21: 2863
  • 48 Zhou X, Xu H, Yang Q, Chen H, Wang S, Zhao H. Chem. Commun. (Cambridge) 2019; 55: 8603
  • 49 Gandeepan P, Rajamalli P, Cheng C.-H. Angew. Chem. Int. Ed. 2016; 55: 4308
  • 50 Nallagonda R, Thrimurtulu N, Volla CMR. Adv. Synth. Catal. 2018; 360: 255
  • 53 Zhang Z.-Z, Zhou G, Huang F.-R, Shi B.-F. Synthesis 2021; 53: 3290
  • 54 Zhao H, Shao X, Wang T, Zhai S, Qiu S, Tao C, Wang H, Zhai H. Chem. Commun. (Cambridge) 2018; 54: 4927
  • 55 Zhao H, Wang T, Qing Z, Zhai H. Chem. Commun. (Cambridge) 2020; 56: 5524
  • 56 Qiu S, Zhai S, Wang H, Chen X, Zhai H. Chem. Commun. (Cambridge) 2019; 55: 4206
  • 57 Zhai H, Liu M, Wang C, Qiu S, Wei J, Yang H, Wu Y. J. Org. Chem. 2021; 86: 14915
  • 58 Dey A, Singh A, Volla CMR. Chem. Commun. (Cambridge) 2022; 58: 1386
  • 60 Thrimurtulu N, Dey A, Maiti D, Volla CMR. Angew. Chem. Int. Ed. 2016; 55: 12361
  • 61 Boobalan R, Kuppusamy R, Santhoshkumar R, Gandeepan P, Cheng C.-H. ChemCatChem 2017; 9: 273
  • 62 Li T, Zhang C, Tan Y, Pan W, Rao Y. Org. Chem. Front. 2017; 4: 204
  • 64 Thrimurtulu N, Nallagonda R, Volla CMR. Chem. Commun. (Cambridge) 2017; 53: 1872
  • 66 Zhai S, Qiu S, Chen X, Tao C, Li Y, Cheng B, Wang H, Zhai H. ACS Catal. 2018; 8: 6645
  • 73 Nguyen TT, Grigorjeva L, Daugulis O. Chem. Commun. (Cambridge) 2017; 53: 5136
  • 74 Barsu N, Kalsi D, Sundararaju B. Catal. Sci. Technol. 2018; 8: 5963
  • 75 Ying J, Fu L.-Y, Zhong G, Wu X.-F. Org. Lett. 2019; 21: 5694
  • 76 Gao Q, Lu J.-M, Yao L, Wang S, Ying J, Wu X.-F. Org. Lett. 2021; 23: 178
  • 77 Lukasevics L, Cizikovs A, Grigorjeva L. Org. Lett. 2020; 22: 2720
  • 78 Lukasevics L, Cizikovs A, Grigorjeva L. Org. Lett. 2021; 23: 2748
  • 79 Qiu S, Zhai S, Wang H, Tao C, Zhao H, Zhai H. Adv. Synth. Catal. 2018; 360: 3271
  • 81 Gu Z.-Y, Liu C.-G, Wang S.-Y, Ji S.-J. J. Org. Chem. 2017; 82: 2223
  • 82 Kalsi D, Barsu N, Dahiya P, Sundararaju B. Synthesis 2017; 49: 3937
  • 83 Kalsi D, Barsu N, Sundararaju B. Chem.–Eur. J. 2018; 24: 2360
  • 84 Lukasevics L, Cizikovs A, Grigorjeva L. Chem. Commun. (Cambridge) 2022; 58: 9754
  • 85 Zhao H, Shao X, Qing Z, Wang T, Chen X, Yang H, Zhai H. Adv. Synth. Catal. 2019; 361: 1678
  • 86 Yamaguchi T, Kommagalla Y, Aihara Y, Chatani N. Chem. Commun. (Cambridge) 2016; 52: 10129
  • 87 Maity S, Kancherla R, Dhawa U, Hoque E, Pimparkar S, Maiti D. ACS Catal. 2016; 6: 5493
  • 88 Manoharan R, Sivakumar G, Jeganmohan M. Chem. Commun. (Cambridge) 2016; 52: 10533
  • 89 Maity S, Dolui P, Kancherla R, Maiti D. Chem. Sci. 2017; 8: 5181
  • 90 Baccalini A, Vergura S, Dolui P, Maiti S, Dutta S, Maity S, Khan FF, Lahiri GK, Zanoni G, Maiti D. Org. Lett. 2019; 21: 8842
  • 91 Song H, Li Y, Yao Q.-J, Shi B.-F. Org. Chem. Front. 2022; 9: 4823
  • 92 Gao Y, Zhang M, Wang C, Yang Z, Huang X, Feng R, Qi C. Chem. Commun. (Cambridge) 2020; 56: 14231
  • 94 Du C, Li P.-X, Zhu X, Suo J.-F, Niu J.-L, Song M.-P. Angew. Chem. Int. Ed. 2016; 55: 13571
  • 95 Lv N, Chen Z, Liu Y, Liu Z, Zhang Y. Org. Lett. 2018; 20: 5845
  • 96 Tan G, He S, Huang X, Liao X, Cheng Y, You J. Angew. Chem. Int. Ed. 2016; 55: 10414
  • 97 Hu L, Gui Q, Chen X, Tan Z, Zhu G. Org. Biomol. Chem. 2016; 14: 11070
  • 98 Bu Q, Gońka E, Kuciński K, Ackermann L. Chem.–Eur. J. 2019; 25: 2213
  • 99 Li Q, Li Y, Hu W, Hu R, Li G, Lu H. Chem.–Eur. J. 2016; 22: 12286
  • 100 Wang H, Zhang S, Wang Z, He M, Xu K. Org. Lett. 2016; 18: 5628
  • 101 Li S, Wang B, Dong G, Li C, Liu H. RSC Adv. 2018; 8: 13454
  • 104 Li M.-H, Si X.-J, Zhang H, Yang D, Niu J.-L, Song M.-P. Org. Lett. 2021; 23: 914
  • 105 Suseelan Sarala A, Bhowmick S, de Carvalho RL, Al-Thabaiti SA, Mokhtar M, da Silva Junior EN, Maiti D. Adv. Synth. Catal. 2021; 363: 4994
  • 106 Landge VG, Jaiswal G, Balaraman E. Org. Lett. 2016; 18: 812
  • 107 Landge VG, Midya SP, Rana J, Shinde DR, Balaraman E. Org. Lett. 2016; 18: 5252
  • 109 Zhang L.-B, Hao X.-Q, Zhang S.-K, Liu Z.-J, Zheng X.-X, Gong J.-F, Niu J.-L, Song M.-P. Angew. Chem. Int. Ed. 2015; 54: 272
  • 110 Liu S.-K, Cui X.-F, Liu X.-X, Ma H.-J, Wei D.-D, Luo X.-L, Huang G.-S. ChemistrySelect 2018; 3: 3989
  • 111 Han J.-N, Du C, Zhu X, Wang Z.-L, Zhu Y, Chu Z.-Y, Niu J.-L, Song M.-P. Beilstein J. Org. Chem. 2018; 14: 2090
  • 112 Zhang M, Yang Z, Li R, Huang X, Feng R, Qi C. Tetrahedron Lett. 2020; 61: 151592
  • 113 Wang C, Bei W, Li W, Wang D, Liu Y, Gong Z, Zeng K, Feng R, Huang X, Qi C. Tetrahedron Lett. 2022; 106: 15406
  • 114 Zhang Z.-Z, Cheng J, Yao Q.-J, Yue Q, Zhou G. Adv. Synth. Catal. 2021; 363: 3946
  • 115 Lan J, Xie H, Lu X, Deng Y, Jiang H, Zeng W. Org. Lett. 2017; 19: 4279
  • 117 Lin C, Chen Z, Liu Z, Zhang Y. Adv. Synth. Catal. 2018; 360: 519
  • 118 Sarkar W, Bhowmik A, Mishra A, Vats T.-K, Deb I. Adv. Synth. Catal. 2018; 360: 3228
  • 119 Zhang L.-B, Zhang S.-K, Wei D, Zhu X, Hao X.-Q, Su J.-H, Niu J.-L, Song M.-P. Org. Lett. 2016; 18: 1318
  • 120 Yan Q, Xiao T, Liu Z, Zhang Y. Adv. Synth. Catal. 2016; 358: 2707
  • 121 Du C, Li P.-X, Zhu X, Han J.-N, Niu J.-L, Song M.-P. ACS Catal. 2017; 7: 2810
  • 122 Hu L, Chen X, Yu L, Yu Y, Tan Z, Zhu G, Gui Q. Org. Chem. Front. 2018; 5: 216
  • 126 Wu X, Yang K, Zhao Y, Sun H, Li G, Ge H. Nat. Commun. 2015; 6: 6462
  • 127 Barsu N, Bolli SK, Sundararaju B. Chem. Sci. 2017; 8: 2431
  • 128 Williamson P, Galván A, Gaunt MJ. Chem. Sci. 2017; 8: 2588
  • 129 Zeng L, Tang S, Wang D, Deng Y, Chen J.-L, Lee J.-F, Lei A. Org. Lett. 2017; 19: 2170
  • 130 Zhang Z.-Z, Han Y.-Q, Zhan B.-B, Wang S, Shi B.-F. Angew. Chem. Int. Ed. 2017; 56: 13145
  • 131 Zhang H, Sun M.-C, Yang D, Li T, Song M.-P, Niu J.-L. ACS Catal. 2022; 12: 1650
  • 132 Zhang H, Yang D, Zhao XF, Niu J.-L, Song M.-P. Org. Chem. Front. 2022; 9: 3723
  • 135 Kalsi D, Dutta S, Barsu N, Rueping M, Sundararaju B. ACS Catal. 2018; 8: 8115
  • 136 Kalsi D, Barsu N, Chakrabarti S, Dahiya P, Rueping M, Sundararaju B. Chem. Commun. (Cambridge) 2019; 55: 11626
  • 137 Sen C, Sarvaiya B, Sarkar S, Ghosh SC. J. Org. Chem. 2020; 85: 15287
  • 138 Li T, Li J, Zhu Z, Chen Y, Li X, Yang Q, Xia J, Zhang W, Zhang C, Pan W, Wu S. Org. Chem. Front. 2021; 8: 928
  • 139 Ban Y.-L, You L, Wang T, Wu L.-Z, Liu Q. ACS Catal. 2021; 11: 5054
  • 140 Mandal R, Barsu N, Garai B, Das A, Perekalin D, Sundararaju B. Chem. Commun. (Cambridge) 2021; 57: 12167
  • 141 Xu Z, Hu Y, Wang L, Sun M, Li P. Org. Biomol. Chem. 2021; 19: 10112
  • 142 Khot NP, Deo NK, Kapur M. Chem. Commun. (Cambridge) 2022; 58: 13967
  • 143 Sauermann N, Meyer TH, Tian C, Ackermann L. J. Am. Chem. Soc. 2017; 139: 18452
  • 144 Tian C, Dhawa U, Struwe J, Ackermann L. Chin. J. Chem. 2019; 37: 552
  • 145 Zeng L, Li H, Tang S, Gao X, Deng Y, Zhang G, Pao C.-W, Chen J.-L, Lee J.-F, Lei A. ACS Catal. 2018; 8: 5448
  • 146 Sau SC, Mei R, Struwe J, Ackermann L. ChemSusChem 2019; 12: 3023
  • 147 Chen J, Jin L, Zhou J, Jiang X, Yu C. Tetrahedron Lett. 2019; 60: 2054
  • 148 Tian C, Massignan L, Meyer TH, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 2383
  • 149 Tang S, Wang D, Liu Y, Zeng L, Lei A. Nat. Commun. 2018; 9: 798
  • 150 Meyer TH, Chesnokov GA, Ackermann L. ChemSusChem 2020; 13: 668
  • 151 Mei R, Sauermann N, Oliveira JCA, Ackermann L. J. Am. Chem. Soc. 2018; 140: 7913
  • 152 Cao Y, Yuan Y, Lin Y, Jiang X, Weng Y, Wang T, Bu F, Zeng L, Lei A. Green Chem. 2020; 22: 1548
  • 154 Meyer TH, Oliveira JCA, Sau SC, Ang NWJ, Ackermann L. ACS Catal. 2018; 8: 9140
  • 155 Mei R, Fang X, He L, Sun J, Zou L, Ma W, Ackermann L. Chem. Commun. (Cambridge) 2020; 56: 1393
  • 156 Sauermann N, Mei R, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 5090
  • 157 Gao X, Wang P, Zeng L, Tang S, Lei A. J. Am. Chem. Soc. 2018; 140: 4195
  • 158 Dhawa U, Tian C, Li W, Ackermann L. ACS Catal. 2020; 10: 6457
  • 159 Yuan W.-K, Shi B.-F. Angew. Chem. Int. Ed. 2021; 60: 23187
  • 160 Yao Q.-J, Chen J.-H, Song H, Huang F.-R, Shi B.-F. Angew. Chem. Int. Ed. 2022; 61: e202 202 892
  • 161 Si X.-J, Yang D, Sun M.-C, Wei D, Song M.-P, Niu J.-L. Nat. Synth. 2022; 1: 709
  • 162 Chen J.-H, Teng M.-Y, Huang F.-R, Song H, Wang Z.-K, Zhuang H.-L, Wu Y.-J, Wu X, Yao Q.-J, Shi B.-F. Angew. Chem. Int. Ed. 2022; 61: e202 210 106
  • 163 Wang B.-J, Xu G.-X, Huang Z.-W, Wu X, Hong X, Yao Q.-J, Shi B.-F. Angew. Chem. Int. Ed. 2022; 61: e202 208 912
  • 164 Yao Q.-J, Huang F.-R, Chen J.-H, Zhong M.-Y, Shi B.-F. Angew. Chem. Int. Ed. 2023; 62: e202 218 533
  • 165 Münchow TV, Dana S, Xu Y, Yuan B, Ackermann L. Science (Washington, D. C.) 2023; 379: 1036