Maiti, D. : 2023 Science of Synthesis, 2023/4: Cross-Dehydrogenative Coupling DOI: 10.1055/sos-SD-240-00034
Cross-Dehydrogenative Coupling

7 Alkene/Alkene Cross-Dehydrogenative Coupling for C(sp2)—C(sp2) Bond Formation

More Information

Book

Editor: Maiti, D.

Authors: Adak, L. ; Ali, W.; Aravindan, N.; Arun, V. ; Baidya, M. ; Besset, T. ; Brocksom, T. J. ; Chen, T. ; Chowdhury, D.; de Oliveira, K. T. ; De Sarkar, S. ; Escudero, J. ; Faisca Phillips, A. M. ; Fukuta, T.; Ghosh, S. ; Ghosh, T.; Guedes da Silva, M. F. C. ; Guin, S.; Han, L.-B. ; Huang, C.-Y. ; Iwasaki, T. ; Jeganmohan, M. ; Jha, N. ; Kakiuchi, F. ; Kambe, N.; Kanai, M. ; Kang, H. ; Kapur, M. ; Khandelia, T. ; Kochi, T. ; Koner, M.; Li, C.; Li, C.-J. ; Li, X. ; Logeswaran, R.; Maes, B. U. W. ; Maiti, D. ; Martins, G. M. ; Miyabe, H. ; Patel, B. K. ; Pombeiro, A. J. L. ; Ranu, B. C. ; Saha, S. K. ; Sambiagio, C. ; Silva, R. C. ; Song, Q. ; Zimmer, G. C.

Title: Cross-Dehydrogenative Coupling

Print ISBN: 9783132455245; Online ISBN: 9783132455269; Book DOI: 10.1055/b000000640

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

Conjugated dienes are not only synthetically versatile but are also often found in natural products and bioactive compounds, and various methods have been developed for the stereo- and regioselective synthesis of 1,3-diene structures. Recently, much attention has been paid to transition-metal-catalyzed cross-dehydrogenative coupling (CDC) reactions between alkenes, because they enable the synthesis of 1,3-dienes in few steps from readily available molecules, thus providing atom-economical, environmentally benign synthetic methods. This chapter briefly describes representative examples of alkene CDC reactions between two different alkenes.

 
  • 1 Science of Synthesis Catalytic Transformations via C—H Activation. Yu J.-Q. Thieme; Stuttgart 2015
  • 2 Lei A, Shi W, Liu C, Liu W, Zhang H, He C. Oxidative Cross-Coupling Reactions. Wiley-VCH; Weinheim, Germany 2017: 45-137
  • 3 Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev. 2019; 119: 2192
  • 4 Huang C.-Y, Kang H, Li J, Li C.-J. J. Org. Chem. 2019; 84: 12705
  • 5 Shang X, Liu Z.-Q. Chem. Soc. Rev. 2013; 42: 3253
  • 6 Girard SA, Knauber T, Li C.-J. Angew. Chem. Int. Ed. 2014; 53: 74
  • 7 Liu C, Yuan J, Gao M, Tang S, Li W, Shi R, Lei A. Chem. Rev. 2015; 115: 12138
  • 8 Liu B, Yang L, Li P, Wang F, Li X. Org. Chem. Front. 2021; 8: 1085
  • 9 Zhang J, Lu X, Shen C, Xu L, Ding L, Zhong G. Chem. Soc. Rev. 2021; 50: 3263
  • 10 Hatamoto Y, Sakaguchi S, Ishii Y. Org. Lett. 2004; 6: 4623
  • 11 Pawar GG, Singh G, Tiwari VK, Kapur M. Adv. Synth. Catal. 2013; 355: 2185
  • 12 Xu Q, Zheng B, Zhou X, Pan L, Liu Q, Li Y. Org. Lett. 2020; 22: 1692
  • 13 Xu Y.-H, Lu J, Loh T.-P. J. Am. Chem. Soc. 2009; 131: 1372
  • 14 Wen Z.-K, Xu Y.-H, Loh T.-P. Chem.–Eur. J. 2012; 18: 13284
  • 15 Liang Q.-J, Yang C, Meng F.-F, Jiang B, Xu Y.-H, Loh T.-P. Angew. Chem. Int. Ed. 2017; 56: 5091
  • 16 Zhang X, Wang M, Zhang M.-X, Xu Y.-H, Loh T.-P. Org. Lett. 2013; 15: 5531
  • 17 Al-Maksoud W, Djakovitch L, Jahjah M, Pinel C. Sci. China Chem. 2010; 53: 1927
  • 18 Gigant N, Bäckvall J.-E. Chem.–Eur. J. 2013; 19: 10799
  • 19 Wen Z.-K, Xu Y.-H, Loh T.-P. Chem. Sci. 2013; 4: 4520
  • 20 Xu Y.-H, Wang W.-J, Wen Z.-K, Hartley JJ, Loh T.-P. Tetrahedron Lett. 2010; 51: 3504
  • 21 Besset T, Kuhl N, Patureau FW, Glorius F. Chem.–Eur. J. 2011; 17: 7167
  • 22 Feng R, Yu W, Wang K, Liu Z, Zhang Y. Adv. Synth. Catal. 2014; 356: 1501
  • 23 Yoshimura R, Shibata Y, Tanaka K. J. Org. Chem. 2019; 84: 13164
  • 24 Mao C.-L, Zhao S, Zang Z.-L, Xiao L, Zhou C.-H, He Y, Cai G.-X. J. Org. Chem. 2020; 85: 774
  • 25 Jin L, Zhang P, Li Y, Yu X, Shi B.-F. J. Am. Chem. Soc. 2021; 143: 12335
  • 26 Liu M, Yang P, Karunananda MK, Wang Y, Liu P, Engle KM. J. Am. Chem. Soc. 2018; 140: 5805
  • 27 Meng K, Li T, Yu C, Shen C, Zhang J, Zhong G. Nat. Commun. 2019; 10: 5109
  • 28 Xu S, Hirano K, Miura M. Org. Lett. 2020; 22: 9059
  • 29 Jambu S, Jeganmohan M. Org. Lett. 2020; 22: 5057
  • 30 Wang Y.-C, Huang Y.-H, Tsai H.-C, Basha RS, Chou C.-M. Org. Lett. 2020; 22: 6765
  • 31 Logeswaran R, Jeganmohan M. Org. Lett. 2021; 23: 767
  • 32 Bai Y, Zeng J, Cai S, Liu X.-W. Org. Lett. 2011; 13: 4394
  • 33 Logeswaran R, Jeganmohan M. Org. Lett. 2021; 23: 5679
  • 34 Boultadakis-Arapinis M, Hopkinson MN, Glorius F. Org. Lett. 2014; 16: 1630
  • 35 Li T, Zhang J, Yu C, Lu X, Xu L, Zhong G. Chem. Commun. (Cambridge) 2017; 53: 12926
  • 36 Hu X.-H, Yang X.-F, Loh T.-P. Angew. Chem. Int. Ed. 2015; 54: 15535
  • 37 Yu H, Jin W, Sun C, Chen J, Du W, He S, Yu Z. Angew. Chem. Int. Ed. 2010; 49: 5792
  • 38 Yang X, Liu Z, Sun C, Chen J, Yu Z. Chem.–Eur. J. 2015; 21: 14085
  • 39 Li L, Chu Y, Gao L, Song Z. Chem. Commun. (Cambridge) 2015; 51: 15546
  • 40 Kim D, Hong S. Org. Lett. 2011; 13: 4466
  • 41 Moon Y, Hong S. Chem. Commun. (Cambridge) 2012; 48: 7191
  • 42 Min M, Kim Y, Hong S. Chem. Commun. (Cambridge) 2013; 49: 196
  • 43 Sharma K, Neog K, Sharma A, Gogoi P. Org. Biomol. Chem. 2021; 19: 6256
  • 44 Hirota K, Isobe Y, Kitade Y, Maki Y. Synthesis 1987; 495
  • 45 Yu Y.-Y, Georg GI. Chem. Commun. (Cambridge) 2013; 49: 3694
  • 46 Li M, Li L, Ge H. Adv. Synth. Catal. 2010; 352: 2445
  • 47 Cheng D, Gallagher T. Org. Lett. 2009; 11: 2639
  • 48 Chen Y, Wang F, Jia A, Li X. Chem. Sci. 2012; 3: 3231
  • 49 Liu W, Wang S, Zhang Q, Yu J, Li J, Xie Z, Cao H. Chem.–Asian J. 2014; 9: 2436
  • 50 Lv J, Liang Y, He P, Cai Z, Liu J, Huang F. RSC Adv. 2015; 5: 36171
  • 51 Chen S, Chang X, Tao Y, Chen H, Zia Y. Org. Biomol. Chem. 2015; 13: 10675
  • 52 Yu Y.-Y, Niphakis MJ, Georg GI. Org. Lett. 2011; 13: 5932
  • 53 Yu Y.-Y, Georg GI. Adv. Synth. Catal. 2014; 356: 1359
  • 54 Gigant N, Gillaizeau I. Org. Lett. 2012; 14: 3304
  • 55 Gigant N, Chausset-Boissarie L, Rey-Rodriguez R, Gillaizeau I. C. R. Chim. 2013; 16: 358
  • 56 Xu Y.-H, Chok YK, Loh T.-P. Chem. Sci. 2011; 2: 1822
  • 57 Li C, Li W.-H, Dong L. Org. Chem. Front. 2018; 5: 3460
  • 58 Zhang J, Loh T.-P. Chem. Commun. (Cambridge) 2012; 48: 11232
  • 59 Li F, Yu C, Zhang J, Zhong G. Org. Biomol. Chem. 2017; 15: 1236
  • 60 Li T, Shen C, Sun Y, Zhang J, Xiang P, Lu X, Zhong G. Org. Lett. 2019; 21: 7772
  • 61 Meng K, Sun Y, Zhang J, Zhang K, Ji X, Ding L, Zhong G. Org. Lett. 2019; 21: 8219
  • 62 Hu X.-H, Zhang J, Yang X.-F, Xu Y.-H, Loh T.-P. J. Am. Chem. Soc. 2015; 137: 3169
  • 63 Zhu Y.-Q, Han T.-F, He J.-L, Li M, Li J.-X, Zhu K. J. Org. Chem. 2017; 82: 8598
  • 64 Jiang B, Zhao M, Li S.-S, Xu Y.-H, Loh T.-P. Angew. Chem. Int. Ed. 2018; 57: 555
  • 65 Maraswami M, Goh J, Loh T.-P. Org. Lett. 2020; 22: 9724
  • 66 Zhang Y, Cui Z, Li Z, Liu Z.-Q. Org. Lett. 2012; 14: 1838