Maiti, D. : 2023 Science of Synthesis, 2023/4: Cross-Dehydrogenative Coupling DOI: 10.1055/sos-SD-240-00107
Cross-Dehydrogenative Coupling

4 Cross-Dehydrogenative Coupling Involving Alkynes for C(sp2)—C(sp) Bond Formation

Weitere Informationen

Buch

Herausgeber: Maiti, D.

Autoren: Adak, L. ; Ali, W.; Aravindan, N.; Arun, V. ; Baidya, M. ; Besset, T. ; Brocksom, T. J. ; Chen, T. ; Chowdhury, D.; de Oliveira, K. T. ; De Sarkar, S. ; Escudero, J. ; Faisca Phillips, A. M. ; Fukuta, T.; Ghosh, S. ; Ghosh, T.; Guedes da Silva, M. F. C. ; Guin, S.; Han, L.-B. ; Huang, C.-Y. ; Iwasaki, T. ; Jeganmohan, M. ; Jha, N. ; Kakiuchi, F. ; Kambe, N.; Kanai, M. ; Kang, H. ; Kapur, M. ; Khandelia, T. ; Kochi, T. ; Koner, M.; Li, C.; Li, C.-J. ; Li, X. ; Logeswaran, R.; Maes, B. U. W. ; Maiti, D. ; Martins, G. M. ; Miyabe, H. ; Patel, B. K. ; Pombeiro, A. J. L. ; Ranu, B. C. ; Saha, S. K. ; Sambiagio, C. ; Silva, R. C. ; Song, Q. ; Zimmer, G. C.

Titel: Cross-Dehydrogenative Coupling

Print ISBN: 9783132455245; Online ISBN: 9783132455269; Buch-DOI: 10.1055/b000000640

Fachgebiete: Organische Chemie;Chemische Reaktionen, Katalyse;Organometallchemie;Chemische Labormethoden, Stöchiometrie

Science of Synthesis Reference Libraries



Übergeordnete Publikation

Titel: Science of Synthesis

DOI: 10.1055/b-00000101

Reihenherausgeber: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Typ: Mehrbändiges Werk

 


Abstract

Cross-dehydrogenative coupling reactions represent one of the most environmentally friendly and atom-economic strategies to achieve carbon–carbon or carbon–heteroatom bond formation from non-prefunctionalized substrates, formally producing only dihydrogen as waste. Using terminal alkynes as one of the coupling partners in cross-dehydrogenative couplings, the sustainable synthesis of a myriad of alkynylated compounds is possible. In this review, the major advances in cross-dehydrogenative couplings involving alkynes are covered, with a focus on the formation of C(sp2)—C(sp) bonds, leading to alkynylated arenes, 1,3-enynes, and ynone derivatives. Synthetic strategies, reaction conditions, and the scope of each method are critically discussed, from early developments to date.

 
  • 1 Acetylene Chemistry: Chemistry, Biology, and Material Science. Diederich F, Stang PJ, Tykwinski RR. Wiley-VCH; Weinheim 2004
  • 2 Gleiter R, Werz DB. Chem. Rev. 2010; 110: 4447
  • 3 Modern Alkyne Chemistry: Catalytic and Atom-Economic Transformations. Trost BM, Li C.-J. Wiley-VCH; Weinheim 2014
  • 4 Heravi MM, Dehghani M, Zadsirjan V, Ghanbarian M. Curr. Org. Synth. 2019; 16: 205
  • 5 Chalotra N, Kumar J, Naqvi T, Shah BA. Chem. Commun. (Cambridge) 2021; 57: 11285
  • 6 Shaw R, Elagamy A, Althagafib I, Pratap R. Org. Biomol. Chem. 2020; 18: 3797
  • 7 Dudnik AS, Gevorgyan V. Angew. Chem. Int. Ed. 2010; 49: 2096
  • 8 Chinchilla R, Nájera C. Chem. Soc. Rev. 2011; 40: 5084
  • 9 Li C.-J. Acc. Chem. Res. 2010; 43: 581
  • 10 Brand JP, Waser J. Chem. Soc. Rev. 2012; 41: 4165
  • 11 Huang C.-Y, Kang H, Li J, Li C.-J. J. Org. Chem. 2019; 84: 12705
  • 12 Tian T, Li Z, Li C.-J. Green Chem. 2021; 23: 6789
  • 13 Panda B. Asian J. Org. Chem. 2020; 9: 492
  • 14 Zhang J.-S, Liu L, Chen T, Han L.-B. ChemSusChem 2020; 13: 4776
  • 15 Tian T, Li Z. Science of Synthesis: Knowledge Updates 2020; 2: 375
  • 16 Yang L, Zhao L, Li C.-J. Chem. Commun. (Cambridge) 2010; 46: 4184
  • 17 Wu C, Li P, Fang Y, Zhao J, Xue W, Li Y, Larock RC, Shi F. Tetrahedron Lett. 2011; 52: 3797
  • 18 Kim SH, Yoon J, Chang S. Org. Lett. 2011; 13: 1474
  • 19 Kim SH, Park SH, Chang S. Tetrahedron 2012; 68: 5162
  • 20 Shibahara F, Dohke Y, Murai T. J. Org. Chem. 2012; 77: 5381
  • 21 Jie X, Shang Y, Hu P, Su W. Angew. Chem. Int. Ed. 2013; 52: 3630
  • 22 Parsharamulu T, Reddy PV, Likhar PR, Kantam ML. Tetrahedron 2015; 71: 1975
  • 23 Ha H, Shin C, Bae S, Joo JM. Eur. J. Org. Chem. 2018; 2645
  • 24 Chen C.-H, Chai Y, Zhou Z.-X, Rao W.-H, Liu B, Liu L, Xu R, Liu Y.-J, Zeng M.-H. Org. Chem. Front. 2019; 6: 442
  • 25 Bellina F, Biagetti M, Guariento S, Lessi M, Fausti M, Ronchi P, Rosadoni E. RSC Adv. 2021; 11: 25504
  • 26 Chen S.-Y, Tseng Y.-H, Lu C.-F, Chuang C.-Y, Cheng Y.-J. Adv. Synth. Catal. 2021; 363: 4526
  • 27 Kitahara M, Hirano K, Tsurugi H, Satoh T, Miura M. Chem.–Eur. J. 2010; 16: 1772
  • 28 Matsuyama N, Kitahara M, Hirano K, Satoh T, Miura M. Org. Lett. 2010; 12: 2358
  • 29 Wei Y, Zhao H, Kan J, Su W, Hong M. J. Am. Chem. Soc. 2010; 132: 2522
  • 30 Ding S, Yan Y, Jiao N. Chem. Commun. (Cambridge) 2013; 49: 4250
  • 31 Dong J, Wang F, You J. Org. Lett. 2014; 16: 2884
  • 32 Shang M, Wang H.-L, Sun S.-Z, Dai H.-X, Yu J.-Q. J. Am. Chem. Soc. 2014; 136: 11590
  • 33 Liu Y.-J, Liu Y.-H, Yin X.-S, Gu W.-J, Shi B.-F. Chem.–Eur. J. 2015; 21: 205
  • 34 Song Z, Yu Y, Yu L, Liu D, Wu Q, Xia Z, Xiao Y, Tan Z. Organometallics 2019; 38: 3349
  • 35 Zhou J, Shi J, Qi Z, Li X, Xu HE, Yi W. ACS Catal. 2015; 5: 6999
  • 36 Wu G, Ouyang W, Chen Q, Huo Y, Li X. Org. Chem. Front. 2019; 6: 284
  • 37 Sun X, Zhao W, Li B.-J. Chem. Commun. (Cambridge) 2020; 56: 1298
  • 38 Liu Y.-H, Liu Y.-J, Yan S.-Y, Shi B.-F. Chem. Commun. (Cambridge) 2015; 51: 11650
  • 39 Fuchita Y, Utsunomiya Y, Yasutake M. J. Chem. Soc., Dalton Trans. 2001; 2330
  • 40 de Haro T, Nevado C. J. Am. Chem. Soc. 2010; 132: 1512
  • 41 Leyva-Pérez A, Oliver-Meseguer J, Cabrero-Antonino JR, Rubio-Marqués P, Serna P, Al-Resayes SI, Corma A. ACS Catal. 2013; 3: 1865
  • 42 Hofer M, de Haro T, Gómez-Bengoa E, Genoux A, Nevado C. Chem. Sci. 2019; 10: 8411
  • 43 Zhang L.-B, Hao X.-Q, Liu Z.-J, Zheng X.-X, Zhang S.-K, Niu J.-L, Song M.-P. Angew. Chem. Int. Ed. 2015; 54: 10012
  • 44 Dyadchenko VP, Dyadchenko MA, Okulov VN, Lemenovskii DA. J. Organomet. Chem. 2011; 696: 468
  • 45 Patil SS, Jadhav RP, Patil SV, Bobade VD. Tetrahedron Lett. 2011; 52: 5617
  • 46 Chen X, Yang F, Cui X, Wu Y. Adv. Synth. Catal. 2017; 359: 3922
  • 47 Hadi V, Yoo KS, Jeong M, Jung KW. Tetrahedron Lett. 2009; 50: 2370
  • 48 Shao Y.-L, Zhang X.-H, Han J.-S, Zhong P. Org. Lett. 2012; 14: 5242 Org. Lett. 2014; 16: 3611
  • 49 Yada A, Nishi S, Sato Y, Ichinoseki S, Murakami M. J. Chin. Chem. Soc. (Taipei) 2018; 65: 117
  • 50 Zhao T, Qin D, Han W, Yang S, Feng B, Gao G, You J. Chem. Commun. (Cambridge) 2019; 55: 6118
  • 51 Murarka S, Studer A. Org. Lett. 2011; 13: 2746
  • 52 Yuan J, Wang J, Zhang G, Liu C, Qi X, Lan Y, Miller JT, Kropf AJ, Bunel EE, Lei A. Chem. Commun. (Cambridge) 2015; 51: 576
  • 53 Tang S, Zeng L, Liu Y, Lei A. Angew. Chem. Int. Ed. 2015; 54: 15850
  • 54 Ogiwara Y, Kubota M, Kurogi K, Konakahara T, Sakai N. Chem.–Eur. J. 2015; 21: 18598
  • 55 Wu J.-J, Li Y, Zhou H.-Y, Wen A.-H, Lun C.-C, Yao S.-Y, Ke Z, Ye B.-H. ACS Catal. 2016; 6: 1263
  • 56 Kataria M, Deol H, Singh G, Kumar M, Bhalla V. New J. Chem. 2018; 42: 822