Maiti, D. : 2023 Science of Synthesis, 2023/4: Cross-Dehydrogenative Coupling DOI: 10.1055/sos-SD-240-00131
Cross-Dehydrogenative Coupling

10 Alkene/Alkane Cross-Dehydrogenative Coupling for C(sp2)—C(sp3) Bond Formation

Weitere Informationen

Buch

Herausgeber: Maiti, D.

Autoren: Adak, L. ; Ali, W.; Aravindan, N.; Arun, V. ; Baidya, M. ; Besset, T. ; Brocksom, T. J. ; Chen, T. ; Chowdhury, D.; de Oliveira, K. T. ; De Sarkar, S. ; Escudero, J. ; Faisca Phillips, A. M. ; Fukuta, T.; Ghosh, S. ; Ghosh, T.; Guedes da Silva, M. F. C. ; Guin, S.; Han, L.-B. ; Huang, C.-Y. ; Iwasaki, T. ; Jeganmohan, M. ; Jha, N. ; Kakiuchi, F. ; Kambe, N.; Kanai, M. ; Kang, H. ; Kapur, M. ; Khandelia, T. ; Kochi, T. ; Koner, M.; Li, C.; Li, C.-J. ; Li, X. ; Logeswaran, R.; Maes, B. U. W. ; Maiti, D. ; Martins, G. M. ; Miyabe, H. ; Patel, B. K. ; Pombeiro, A. J. L. ; Ranu, B. C. ; Saha, S. K. ; Sambiagio, C. ; Silva, R. C. ; Song, Q. ; Zimmer, G. C.

Titel: Cross-Dehydrogenative Coupling

Print ISBN: 9783132455245; Online ISBN: 9783132455269; Buch-DOI: 10.1055/b000000640

Fachgebiete: Organische Chemie;Chemische Reaktionen, Katalyse;Organometallchemie;Chemische Labormethoden, Stöchiometrie

Science of Synthesis Reference Libraries



Übergeordnete Publikation

Titel: Science of Synthesis

DOI: 10.1055/b-00000101

Reihenherausgeber: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Typ: Mehrbändiges Werk

 


Abstract

In the area of C—H functionalization, cross-dehydrogenative coupling (CDC) represents the most atom-efficient coupling reaction, since it obviates the need for substrate prefunctionalization. The CDC strategy enables the construction of C—C bonds of diverse hybridization directly from C—H bonds present in the precursors, with formal loss of dihydrogen. C(sp2)—C(sp3) bond formation via selective C(sp3)—H/C(sp2)-H cross coupling is generally difficult to achieve owing to the inertness of C(sp3)-H bonds and their ubiquity in organic molecules. This review describes the different strategies developed over the years in overcoming the aforesaid challenges to enable C(sp2)—C(sp3) bond formation by CDC. Utilization of directing-group-assisted C(sp3)—H metalation with the aid of ligands has largely been the key for selective alkenylation at both proximal and distal positions. Non-directed protocols have also been developed that proceed by selective radical formation using a metal/oxidant combination, or just an oxidant. The developments made in terms of ligand design, scope, mechanistic aspects, and the potential applications of the different methodologies for the CDC between C(sp3)—H and C(sp2)—H bonds are portrayed in this chapter.

 
  • 1 Fleming I. Pericyclic Reactions. Oxford University Press; New York 1999: 1–89
  • 2 Rossiter BE, Swingle NM. Chem. Rev. 1992; 92: 771
  • 3 Rueping M, Nachtsheim BJ. Beilstein J. Org. Chem. 2010; 6: 6
  • 4 Ilardi EA, Stivala CE, Zakarian A. Chem. Soc. Rev. 2009; 38: 3133
  • 5 Liu Y, Doyle MP. Org. Biomol. Chem. 2012; 10: 6388
  • 6 McQuillin FJ, Parker DG, Stephenson GR. Transition Metal Organometallics for Organic Synthesis. Cambridge University Press; Cambridge 1991
  • 7 Tsuji J. Transition Metal Reagents and Catalysts: Innovations in Organic Synthesis. Wiley; Chichester, UK 2002
  • 8 Crabtree RH. The Organometallic Chemistry of the Transition Metals. Wiley; Hoboken, NJ 2005
  • 9 Hoveyda AH, Zhugralin AR. Nature (London) 2007; 450: 243
  • 10 Vougioukalakis GC, Grubbs RH. Chem. Rev. 2010; 110: 1746
  • 11 So CM, Kwong FY. Chem. Soc. Rev. 2011; 40: 4963
  • 12 Rosen BM, Quasdorf KW, Wilson DA. Chem. Rev. 2011; 111: 1346
  • 13 Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
  • 14 Ackermann L. Chem. Rev. 2011; 111: 1315
  • 15 Liu C, Yuan J, Gao M, Tang S, Li W, Shi R, Lei A. Chem. Rev. 2015; 115: 12138
  • 16 Park Y, Kim Y, Chang S. Chem. Rev. 2017; 117: 9247
  • 17 Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev. 2019; 119: 2192
  • 18 Rej S, Ano Y, Chatani N. Chem. Rev. 2020; 120: 1788
  • 19 Liu B, Romine AM, Rubel CZ, Engle KM, Shi B.-F. Chem. Rev. 2021; 121: 14957
  • 20 Sinha SK, Guin S, Maiti S, Biswas JP, Porey S, Maiti D. Chem. Rev. 2022; 122: 5682
  • 21 Ali W, Prakash G, Maiti D. Chem. Sci. 2021; 12: 2735
  • 22 Dutta U, Maiti S, Bhattacharya T, Maiti D. Science (Washington, D. C.) 2021; 372: 701
  • 23 Girard SA, Knauber T, Li CJ. Angew. Chem. Int. Ed. 2014; 53: 74
  • 24 Moritani I, Fujiwara Y. Tetrahedron Lett. 1967; 1119
  • 25 Fujiwara Y, Moritani I, Matsuda M, Teranishi S. Tetrahedron Lett. 1968; 3863
  • 26 Fujiwara Y, Noritani I, Danno S, Asano R, Teranishi S. J. Am. Chem. Soc. 1969; 91: 7166
  • 27 Wasa M, Engle KM, Yu J.-Q. J. Am. Chem. Soc. 2010; 132: 3680
  • 28 He J, Li S, Deng Y, Fu H, Laforteza BN, Spangler JE, Homs A, Yu J.-Q. Science (Washington, D. C.) 2014; 343: 1216
  • 29 Stowers KJ, Fortner KC, Sanford MS. J. Am. Chem. Soc. 2011; 133: 6541
  • 30 Yang W, Ye S, Schmidt Y, Stamos D, Yu J.-Q. Chem.–Eur. J. 2016; 22: 7059
  • 31 Zhuang Z, Yu C.-B, Chen G, Wu Q.-F, Hsiao Y, Joe CL, Qiao JX, Poss MA, Yu J.-Q. J. Am. Chem. Soc. 2018; 140: 10363
  • 32 Park H, Li Y, Yu J.-Q. Angew. Chem. Int. Ed. 2019; 58: 11424
  • 33 Park H, Chekshin N, Shen P.-X, Yu J.-Q. ACS Catal. 2018; 8: 9292
  • 34 Yang L, Xie H, An G, Li G. J. Org. Chem. 2021; 86: 7872
  • 35 Shao N.-Q, Chen Y.-H, Li C, Wang D.-H. Org. Lett. 2020; 22: 7141
  • 36 Shao N.-Q, Wang D.-H. J. Org. Chem. 2021; 86: 16511
  • 37 Li S, Chen G, Feng C.-G, Gong W, Yu J.-Q. J. Am. Chem. Soc. 2014; 136: 5267
  • 38 Thrimurtulu N, Khan S, Maity S, Volla CMR, Maiti D. Chem. Commun. (Cambridge) 2017; 53: 12457
  • 39 Das J, Dolui P, Ali W, Biswas JP, Chandrashekar HB, Prakash G, Maiti D. Chem. Sci. 2020; 11: 9697
  • 40 Ghosh KK, Uttry A, Mondal A, Ghiringhelli F, Wedi P, van Gemmeren M. Angew. Chem. Int. Ed. 2020; 59: 12848
  • 41 Park HS, Fan Z, Zhu R.-Y, Yu J.-Q. Angew. Chem. Int. Ed. 2020; 59: 12853
  • 42 Zhu R.-Y, Li Z.-Q, Park HS, Senanayake CH, Yu J.-Q. J. Am. Chem. Soc. 2018; 140: 3564
  • 43 Jiang H, He J, Liu T, Yu J.-Q. J. Am. Chem. Soc. 2016; 138: 2055
  • 44 Liu J.-B, Tian Y.-Y, Zhang X, Wang L.-L, Chen D.-Z. Dalton Trans. 2018; 47: 4893
  • 45 Zhang J, Zhang S, Zou H. Org. Lett. 2021; 23: 3466
  • 46 Calleja J, Pla D, Gorman TW, Domingo V, Haffemayer B, Gaunt MJ. Nat. Chem. 2015; 7: 1009
  • 47 He C, Gaunt MJ. Chem. Sci. 2017; 8: 3586
  • 48 Zhuang Z, Yu J.-Q. J. Am. Chem. Soc. 2020; 142: 12015
  • 49 Moon Y, Kwon D, Hong S. Angew. Chem. Int. Ed. 2012; 51: 11333
  • 50 Zhang G, Ma Y, Wang S, Zhang Y, Wang R. J. Am. Chem. Soc. 2012; 134: 12334
  • 51 Feng Z.-J, Xuan J, Xia X.-D, Ding W, Guo W, Chen J.-R, Zou Y.-Q, Lu L.-Q, Xiao W.-J. Org. Biomol. Chem. 2014; 12: 2037
  • 52 Liu D, Liu C, Lia H, Lei A. Chem. Commun. (Cambridge) 2014; 50: 3623
  • 53 Liu D, Liu C, Li H, Lei A. Angew. Chem. Int. Ed. 2013; 52: 4453
  • 54 Cao H, Liu D, Liu C, Hu X, Lei A. Org. Biomol. Chem. 2015; 13: 2264
  • 55 Zhu Y, Wei Y. Chem. Sci. 2014; 5: 2379
  • 56 Gu H, Wang C. Org. Biomol. Chem. 2015; 13: 5880
  • 57 Qin G, Chen X, Yang L, Huang H. ACS Catal. 2015; 5: 2882
  • 58 Niu B, Zhao W, Ding Y, Bian Z, Pittman Jr CU, Zhou A, Ge H. J. Org. Chem. 2015; 80: 7251
  • 59 Zhou S.-L, Guo L.-N, Duan X.-H. Eur. J. Org. Chem. 2014; 8094
  • 60 Mir BA, Banerjee A, Santra SK, Rajamanickam S, Patel BK. Adv. Synth. Catal. 2016; 358: 3471
  • 61 Wang Q, Lou J, Wu P, Wu K, Yu Z. Adv. Synth. Catal. 2017; 359: 2981
  • 62 Chuentragool P, Yadagiri D, Morita T, Sarkar S, Parasram M, Wang Y, Gevorgyan V. Angew. Chem. Int. Ed. 2019; 58: 1794
  • 63 Parasram M, Chuentragool P, Wang Y, Shi Y, Gevorgyan V. J. Am. Chem. Soc. 2017; 139: 14857
  • 64 Chuentragool P, Parasram M, Shi Y, Gevorgyan V. J. Am. Chem. Soc. 2018; 140: 2465
  • 65 Kurandina D, Parasram M, Gevorgyan V. Angew. Chem. Int. Ed. 2017; 56: 14212
  • 66 Kurandina D, Rivas M, Radzhabov M, Gevorgyan V. Org. Lett. 2018; 20: 357
  • 67 Wang G.-Z, Shang R, Cheng W.-M, Fu Y. J. Am. Chem. Soc. 2017; 139: 18307
  • 68 Cao H, Kuang Y, Shi X, Wong KL, Tan BB, Kwan JMC, Liu X, Wu J. Nat. Commun. 2020; 11: 1956
  • 69 Chen B, Wu L.-Z, Tung C.-H. Acc. Chem. Res. 2018; 51: 2512
  • 70 Tang S, Zeng L, Lei A. J. Am. Chem. Soc. 2018; 140: 13128
  • 71 Yu W.-L, Luo Y.-C, Yan L, Liu D, Wang Z.-Y, Xu P.-F. Angew. Chem. Int. Ed. 2019; 58: 10941
  • 72 Ma Y, Zhang G, Zhang J, Yang D, Wang R. Org. Lett. 2014; 16: 5358
  • 73 Wei G, Zhang C, Bureš F, Ye X, Tan C.-H, Jiang Z. ACS Catal. 2016; 6: 3708
  • 74 Huang H.-Y, Wu H.-R, Wei F, Wang D, Liu L. Org. Lett. 2015; 17: 3702
  • 75 Yang K, Bao X, Yao Y, Qu J, Wang B. Org. Biomol. Chem. 2018; 16: 6275
  • 76 Narayan R, Antonchick AP. Chem.–Eur. J. 2014; 20: 4568
  • 77 Antonchick AP, Burgmann L. Angew. Chem. Int. Ed. 2013; 125: 3349
  • 78 Antonchick AP, Samanta R, Kulikov K, Lategahn J. Angew. Chem. Int. Ed. 2011; 50: 8605
  • 79 Matcha K, Antonchick AP. Angew. Chem. Int. Ed. 2013; 52: 2082
  • 80 Matcha K, Narayan R, Antonchick AP. Angew. Chem. Int. Ed. 2013; 125: 8143
  • 81 Samanta R, Narayan R, Antonchick AP. Org. Lett. 2012; 14: 6108