18 Heteroatom—Heteroatom Bond Formation through Cross-Dehydrogenative Coupling
Book
Editor: Maiti, D.
Title: Cross-Dehydrogenative Coupling
Print ISBN: 9783132455245; Online ISBN: 9783132455269; Book DOI: 10.1055/b000000640
1st edition © 2023. Thieme. All rights reserved.
Georg Thieme Verlag KG, Stuttgart
Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry
Science of Synthesis Reference Libraries
Parent publication
Title: Science of Synthesis
DOI: 10.1055/b-00000101
Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.
Type: Multivolume Edition
Abstract
![](https://www.thieme-connect.de/media/10.1055-b000000640/thumbnails/a_226dmr.jpg)
Cross-dehydrogenative coupling between E—H bonds and Z—H bonds, where E and Z are heteroatoms, can be considered as a green approach for the construction of chemical bonds. Since it avoids the need for prefunctionalization of the starting materials, this type of transformation can shorten synthetic routes and increase the total atom efficiency. In this context, such reactions are recognized as an efficient alternative to classical cross-coupling reactions. During the past decades, the cross-dehydrogenative coupling strategy has been widely used for synthesizing various target functional molecules, and great achievements have been made in carbon—carbon bond formation. In recent years, cross-dehydrogenative coupling has also been employed to construct heteroatom—heteroatom bonds; this review covers advances in this field, with a focus on methods for the formation of phosphorus—heteroatom and sulfur—heteroatom bonds
Key words
cross-dehydrogenative coupling - oxidative coupling - hydrogen release - heteroatom chemistry - atom economy - step economy - sustainable chemistry - catalysis- 1 Cui H.-K, Guo Y, He Y, Wang F.-L, Chang H.-N, Wang Y.-J, Wu F.-M, Tian C.-L, Liu L. Angew. Chem. Int. Ed. 2013; 52: 9558
- 17 Le Corre SS, Berchel M, Couthon-Gourvès H, Haelters J.-P, Jaffrès P.-A. Beilstein J. Org. Chem. 2014; 10: 1166
- 25 Shen J, Li Q.-W, Zhang X.-Y, Wang X, Li G.-Z, Li W.-Z, Yang S.-D, Yang B. Org. Lett. 2021; 23: 1541
- 36 Zheng L, Cai L, Mei W, Liu G, Deng L, Zou X, Zhuo X, Zhong Y, Guo W. J. Org. Chem. 2022; 87: 6224
- 57 Qiao H, Yang L, Yang X, Wang J, Chen Y, Zhang L, Sun W, Zhai L, Mi L. Chem.–Eur. J. 2022; 28: e202 200 600
- 75 Yu T.-Q, Hou Y.-S, Jiang Y, Xu W.-X, Shi T, Wu X, Zhang J.-C, He D, Wang Z. Tetrahedron Lett. 2017; 58: 2084
- 78 Mahato K, Arora N, Ray Bagdi P, Gattu R, Ghosh SS, Khan AT. Chem. Commun. (Cambridge) 2018; 54: 1513
- 85 Wei Z, Wang R, Zhang Y, Wang B, Xia Y, Abdukader A, Xue F, Jin W, Liu C. Eur. J. Org. Chem. 2021; 4728
- 96 Königs CDF, Müller MF, Aiguabella N, Klare HFT, Oestreich M. Chem. Commun. (Cambridge) 2013; 49: 1506
- 101 Mitsudome T, Urayama T, Maeno Z, Mizugaki T, Jitsukawa K, Kaneda K. Chem.–Eur. J. 2015; 21: 3202
- 112 Biffis A, Basato M, Brichese M, Ronconi L, Tubaro C, Zanella A, Graiff C, Tiripicchio A. Adv. Synth. Catal. 2007; 349: 2485
- 119 Mitsudome T, Yamamoto Y, Noujima A, Mizugaki T, Jitsukawa K, Kaneda K. Chem.–Eur. J. 2013; 19: 14398
- 122 Garcés K, Fernández-Alvarez FJ, Polo V, Lalrempuia R, Pérez-Torrente JJ, Oro LA. ChemCatChem 2014; 6: 1691