Maiti, D. : 2023 Science of Synthesis, 2023/4: Cross-Dehydrogenative Coupling DOI: 10.1055/sos-SD-240-00196
Cross-Dehydrogenative Coupling

19 Enantioselective Cross-Dehydrogenative Coupling

More Information

Book

Editor: Maiti, D.

Authors: Adak, L. ; Ali, W.; Aravindan, N.; Arun, V. ; Baidya, M. ; Besset, T. ; Brocksom, T. J. ; Chen, T. ; Chowdhury, D.; de Oliveira, K. T. ; De Sarkar, S. ; Escudero, J. ; Faisca Phillips, A. M. ; Fukuta, T.; Ghosh, S. ; Ghosh, T.; Guedes da Silva, M. F. C. ; Guin, S.; Han, L.-B. ; Huang, C.-Y. ; Iwasaki, T. ; Jeganmohan, M. ; Jha, N. ; Kakiuchi, F. ; Kambe, N.; Kanai, M. ; Kang, H. ; Kapur, M. ; Khandelia, T. ; Kochi, T. ; Koner, M.; Li, C.; Li, C.-J. ; Li, X. ; Logeswaran, R.; Maes, B. U. W. ; Maiti, D. ; Martins, G. M. ; Miyabe, H. ; Patel, B. K. ; Pombeiro, A. J. L. ; Ranu, B. C. ; Saha, S. K. ; Sambiagio, C. ; Silva, R. C. ; Song, Q. ; Zimmer, G. C.

Title: Cross-Dehydrogenative Coupling

Print ISBN: 9783132455245; Online ISBN: 9783132455269; Book DOI: 10.1055/b000000640

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

The possibility of creating a chiral center directly from two C—H bonds, or from a C—H bond and an X—H bond (X = heteroatom), without any prior derivatization (e.g., the installation of a leaving group) opens up many new possibilities in synthesis. Many chiral ligands and organocatalysts have now been discovered to be compatible with the oxidizing conditions in which these transformations take place. Furthermore, as reactions that can be performed under milder conditions are found, such as those that involve the use of molecular oxygen or even air to accept the two hydrogen atoms lost, or that can be run at lower temperatures, the repertoire of cross-dehydrogenative coupling (CDC) methodologies has become even bigger. Ligands such as mono- and bisoxazolines, bisphosphines, axially chiral binaphthols and bi-2-naphthylamine derivatives, and salens, as well as organocatalysts such as amino acids, chiral amines and diamines, cinchona alkaloids, axially chiral phosphoric acids, imidodiphosphoric acids, imidazolinones, and thioureas, amongst others, have been found to be robust and to perform well under CDC reaction conditions, providing high asymmetric induction and good yields of products. Some of these catalysts also work well in synergy with another catalyst. Recent developments in this area include the use of light energy for activation in combination with photocatalysts, as well as methods based on the use of electrochemistry. In this review, methods involving CDC that have been developed for the synthesis of molecules with one or more chiral centers, including compounds with axial or planar chirality, are presented, and their scope and limitations are discussed. The organization is based firstly on the type of catalysis used, and then divided further according to the type of bond being formed.

 
  • 1 Tian T, Li Z, Li C.-J. Green Chem. 2021; 23: 6789
  • 2 Huang C.-Y, Kang H, Li J, Li C. J. Org. Chem. 2019; 84: 12705
  • 3 Faisca Phillips AM, Pombeiro AJL. ChemCatChem 2018; 10: 3354
  • 4 Varun BV, Dhineshkumar J, Bettadapur KR, Siddaraju Y, Alagiri K, Prabhu KR. Tetrahedron Lett. 2017; 58: 803
  • 5 Faisca Phillips AM, Guedes da Silva MFC, Pombeiro AJL. Catalysts 2020; 10: 529
  • 6 Rostoll-Berenguer J, Blay G, Pedro JR, Vila C. Adv. Synth. Catal. 2021; 363: 602
  • 7 Cheng M.-X, Yang S.-D. Synlett 2017; 28: 159
  • 8 Zheng C, You S.-L. RSC Adv. 2014; 4: 6173
  • 9 Li Z, Li C.-J. Org. Lett. 2004; 6: 4997
  • 10 Wencel-Delord J, Panossian A, Leroux FR, Coloberta F. Chem. Soc. Rev. 2015; 44: 3418
  • 11 Tkachenko NV, Bryliakov KP. Mini-Rev. Org. Chem. 2019; 16: 392
  • 12 Nguyen TT. Eur. J. Org. Chem. 2020; 147
  • 13 Mikami K, Aikawa K, Yusa Y, Jodry JJ, Yamanaka M. Synlett 2002; 1561
  • 14 Kočovský P, Vyskočil S, Smrčina M. Chem. Rev. 2003; 103: 3213
  • 15 Bagdi AK, Rahman M, Bhattacherjee D, Zyryanov GV, Ghosh S, Chupakhin ON, Hajra A. Green Chem. 2020; 22: 6632
  • 16 Fabry DC, Rueping M. Acc. Chem. Res. 2016; 49: 1969
  • 17 Wang C.-S, Dixneuf PH, Soulé J.-F. Chem. Rev. 2018; 118: 7532
  • 18 Zhao Y, Xia W. Org. Biomol. Chem. 2019; 17: 4951
  • 19 Lin Q, Li L, Luo S. Chem.–Eur. J. 2019; 25: 10033
  • 20 Faisca Phillips AM, Pombeiro AJL. Org. Biomol. Chem. 2020; 18: 7026
  • 21 Miao J, Ge H. Eur. J. Org. Chem. 2015; 7859
  • 22 Batra A, Singh P, Singh KN. Asian J. Org. Chem. 2021; 10: 1024
  • 23 Zhao Y.-L, Wang Y, Luo Y.-C, Fu X.-Z, Xu P.-F. Tetrahedron Lett. 2015; 56: 3703
  • 24 Tsang AS.-K, Park SJ, Todd MH, In: From C-H to C-C Bonds: Cross-Dehydrogenative-Coupling Li C.-J. Royal Society of Chemistry Cambridge 2015; 254–294
  • 25 Funes-Ardoiz I, Maseras F. ACS Catal. 2018; 8: 1161
  • 26 Chrzanowska M, Rozwadowska MD. Chem. Rev. 2004; 104: 3341
  • 27 Bentley KW. Nat. Prod. Rep. 2004; 21: 395
  • 28 Dubs C, Hamashima Y, Sasamoto N, Seidel TM, Suzuki S, Hashizume D, Sodeoka M. J. Org. Chem. 2008; 73: 5859
  • 29 San Segundo M, Correa A. Synthesis 2018; 50: 2853
  • 30 Zhang G, Zhang Y, Wang R. Angew. Chem. Int. Ed. 2011; 50: 10429
  • 31 Xie Z, Liu X, Liu L. Org. Lett. 2016; 18: 2982
  • 32 Lee A, Betori RC, Crane EA, Scheidt KA. J. Am. Chem. Soc. 2018; 140: 6212
  • 33 Lakshman MK, Vurama PK. Chem. Sci. 2017; 8: 5845
  • 34 Wang G, Xin X, Wang Z, Lu G, Ma Y, Liu L. Nature Commun. 2019; 10: 559
  • 35 Mayr H, Ofial AR, In: Carbocation Chemistry Olah GA, Prakash GKS. Wiley Hoboken, NJ 2004; 331
  • 36 Cao W, Liu X, Peng R, He P, Lin L, Feng X. Chem. Commun. (Cambridge) 2013; 49: 3470
  • 37 Guo C, Song J, Luo S.-W, Gong L.-Z. Angew. Chem. Int. Ed. 2010; 49: 5558
  • 38 Yu J, Ying P, Wang H, Xiang K, Su W. Adv. Synth. Catal. 2020; 362: 893
  • 39 Næsborg L, Leth LA, Reyes-Rodríguez GJ, Palazzo TA, Corti V, Jørgensen KA. Chem.–Eur. J. 2018; 24: 14844
  • 40 Liu X, Zhao C, Zhu R, Liu L. Angew. Chem. Int. Ed. 2021; 60: 18499
  • 41 Smrčina M, Vyskočil S, Máca B, Polášek M, Claxton TA, Abbott AP, Kočovský P. J. Org. Chem. 1994; 59: 2156
  • 42 Zhao X.-J, Li Z.-H, Ding T.-M, Tian J.-M, Tu Y.-Q, Wang A.-F, Xie Y.-Y. Angew. Chem. Int. Ed. 2021; 60: 7061
  • 43 Dyadyuk A, Vershinin V, Shalit H, Shalev H, More NY, Pappo D. J. Am. Chem. Soc. 2022; 144: 3676
  • 44 Temma T, Habaue S. Tetrahedron Lett. 2005; 46: 5655
  • 45 Narute S, Parnes R, Toste FD, Pappo D. J. Am. Chem. Soc. 2016; 138: 16553
  • 46 Tian J.-M, Wang A.-F, Yang J.-S, Zhao X.-J, Tu Y.-Q, Zhang S.-Y, Chen Z.-M. Angew. Chem. Int. Ed. 2019; 58: 11023
  • 47 Gao D.-W, Gu Q, You S.-L. J. Am. Chem. Soc. 2016; 138: 2544
  • 48 Schaarschmidt D, Lang H. Organometallics 2013; 32: 5668
  • 49 Cai Z.-J, Liu C.-X, Gu Q, Zheng C, You S.-L. Angew. Chem. Int. Ed. 2019; 58: 2149
  • 50 Oguma T, Doiuchi D, Fujitomo C, Kim C, Hayashi H, Uchida T, Katsuki T. Asian J. Org. Chem. 2020; 9: 404
  • 51 Narute S, Pappo D. Org. Lett. 2017; 19: 2917
  • 52 Zhang J, Tiwari B, Xing C, Chen X, Chi YR. Angew. Chem. Int. Ed. 2012; 51: 3649
  • 53 Zhang G, Ma Y, Wang S, Zhang Y, Wang R. J. Am. Chem. Soc. 2012; 134: 12334
  • 54 Pan X, Liu X, Sun S, Meng Z, Liu L. Chin. J. Chem. 2018; 36: 1187
  • 55 Xin X, Pan X, Meng Z, Liu X, Liu L. Org. Chem. Front. 2019; 6: 1448
  • 56 Wang Z, Zhu Y, Pan X, Wang G, Liu L. Angew. Chem. Int. Ed. 2020; 59: 3053
  • 57 Yang B, Qiu Y, Jiang T, Wulff WD, Yin X, Zhu C, Bäckvall J.-E. Angew. Chem. Int. Ed. 2017; 56: 4535
  • 58 Zhu C, Yang B, Bäckvall J.-E. J. Am. Chem. Soc. 2015; 137: 11868
  • 59 Ye L, Tian Y, Meng X, Gu Q.-S, Liu X.-Y. Angew. Chem. Int. Ed. 2020; 59: 1129
  • 60 Yeung CS, Dong VM. Chem. Rev. 2011; 111: 1215
  • 61 Batra A, Singh KN. Eur. J. Org. Chem. 2020; 6676
  • 62 Qin Y, Zhu L, Luo S. Chem. Rev. 2017; 117: 9433
  • 63 Beeson TD, Mastracchio A, Hong J.-B, Ashton K, MacMillan DWC. Science (Washington, D. C.) 2007; 316: 582
  • 64 Sibi MP, Hasegawa M. J. Am. Chem. Soc. 2007; 129: 4124
  • 65 Conrad JC, Kong J, Laforteza BN, MacMillan DWC. J. Am. Chem. Soc. 2009; 131: 11640
  • 66 Devery JJ, Conrad JC, MacMillan DWC, Flowers RA. Angew. Chem. Int. Ed. 2010; 49: 6106
  • 67 Rendler S, MacMillan DWC. J. Am. Chem. Soc. 2010; 132: 5027
  • 68 Sud A, Sureshkumar D, Klussmann M. Chem. Commun. (Cambridge) 2009; 3169
  • 69 Xie J, Huang Z.-Z. Angew. Chem. Int. Ed. 2010; 49: 10181
  • 70 Zhang G, Ma Y, Wang S, Konga W, Wang R. Chem. Sci. 2013; 4: 2645
  • 71 Kang YK, Kim DY. Chem. Commun. (Cambridge) 2014; 50: 222
  • 72 Ghobrial M, Harhammer K, Mihovilovic MD, Schnürch M. Chem. Commun. (Cambridge) 2010; 46: 8836
  • 73 Richter H, Mancheño OG. Eur. J. Org. Chem. 2010; 4460
  • 74 Liu X, Sun B, Xie Z, Qin X, Liu L, Lou H. J. Org. Chem. 2013; 78: 3104
  • 75 Xie Z, Liu L, Chen W, Zheng H, Xu Q, Yuan H, Lou H. Angew. Chem. Int. Ed. 2014; 53: 3904
  • 76 Xie Z, Zan X, Sun S, Pan X, Liu L. Org. Lett. 2016; 18: 3944
  • 77 Rezayee NM, Lauridsen VH, Næsborg L, Nguyen TVQ, Tobiesen HN, Jørgensen KA. Chem. Sci. 2019; 10: 3586
  • 78 Meng Z, Sun S, Yuan H, Lou H, Liu L. Angew. Chem. Int. Ed. 2014; 53: 543
  • 79 Chauhan P, Mahajan S, Enders D. Chem. Commun. (Cambridge) 2015; 51: 12890
  • 80 Schmidt A, Dreger A. Curr. Org. Chem. 2011; 15: 1423
  • 81 Ramesh B, Kumar GR, Yarlagadda S, Sridhar B, Reddy BVS. Tetrahedron 2019; 75: 130620
  • 82 Li Z, Li Y, Li X, Wu M, He M.-L, Sun J. Chem. Sci. 2021; 12: 11793
  • 83 Neel AJ, Hehn JP, Tripet PF, Toste FD. J. Am. Chem. Soc. 2013; 135: 14044
  • 84 Cheng M.-X, Ma R.-S, Yang Q, Yang S.-D. Org. Lett. 2016; 18: 3262
  • 85 Faisca Phillips AMMM, In: Organic and Medicinal Chemistry Banik BK. Nova Science New York 2019; 2. 249-319
  • 86 McAtee RC, McClain EJ, Stephenson CRJ. Trends Chem. 2019; 1: 111
  • 87 Jin J, MacMillan DWC. Angew. Chem. Int. Ed. 2015; 54: 1565
  • 88 Larionov E, Mastandrea MM, Pericàs MA. ACS Catal. 2017; 7: 7008
  • 89 Hou H, Zhu S, Atodiresei I, Rueping M. Eur. J. Org. Chem. 2018; 1277
  • 90 Scott JD, Williams RM. Chem. Rev. 2002; 102: 1669
  • 91 Welsch ME, Snyder SA, Stockwell BR. Curr. Opin. Chem. Biol. 2010; 14: 347
  • 92 Reddy RJ, Kawai N, Uenishi J. J. Org. Chem. 2012; 77: 11101
  • 93 Yang Q, Zhang L, Ye C, Luo S, Wu L.-Z, Tung C.-H. Angew. Chem. Int. Ed. 2017; 56: 3694
  • 94 Amos SGE, Garreau M, Buzzetti L, Waser J. Beilstein J. Org. Chem. 2020; 16: 1163
  • 95 Sharma S, Sharma A. Org. Biomol. Chem. 2019; 17: 4384
  • 96 Kumara G, Verma S, Ansari A, Khan N.-H, Kureshy RI. Catal. Commun. 2017; 99: 94
  • 97 Wei G, Zhang C, Bures F, Ye X, Tan C.-H, Jiang Z. ACS Catal. 2016; 6: 3708
  • 98 Maity P, Adhikari D, Jana AK. Tetrahedron 2019; 75: 965
  • 99 Jiang Y, Xu K, Zeng C. Chem. Rev. 2018; 118: 4485
  • 100 Jensen KL, Franke PT, Nielsen LT, Daasbjerg K, Jørgensen KA. Angew. Chem. Int. Ed. 2010; 49: 129
  • 101 Ho X, Mho S, Kang H, Jang H. Eur. J. Org. Chem. 2010; 4436
  • 102 Fu N, Li L, Yang Q, Luo S. Org. Lett. 2017; 19: 2122