Mascareñas, J. L. et al.: Science of Synthesis: Abiotic Reactions in Live Environments DOI: 10.1055/sos-SD-242-00036

15 Abiotic Chemistry in Living Animals: Therapeutic Applications

More Information

Book

Editors: Mascareñas, J. L.; Tomás-Gamasa, M.

Authors: Jeong, Y.; Winssinger, N.; Taran, F.; Kohyama, A.; Papot, S.; Porte, K.; Unciti-Broceta, A.; Jin, S.; Adam, C.; Lorente-Macías, Á.; Croke, S.; Thoreau, F.; Geng, J. ; Lin, S. ; Sapkota, N.

Title: Abiotic Reactions in Live Environments

Online ISBN: 9783132458277; Book DOI: 10.1055/b000000918

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Laboratory Techniques, Stoichiometry;Biochemistry;Pharmaceutical Chemistry, Medizinische Chemie

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

The concept of click chemistry, first reported in 2001, has paved the way for bioorthogonal chemistry, which represents a class of chemical transformations that operate in biological media without interfering with endogenous functional groups. Bioorthogonal reactions including ligation, cleavage, and click-to-release reactions can now be carried out in living organisms, unveiling the potential to modulate drug properties by fostering their selective release or synthesis in targeted tissues as well as their on-demand clearance. Herein, we report innovative approaches that employ bioorthogonal chemistry for therapeutic purposes.

 
  • 19 Zhang X, Huang R, Gopalakrishnan S, Cao-Milán R, Rotello VM. Trends Chem. 2019; 90
  • 22 Weiss JT, Dawson JC, Macleod KG, Rybski W, Fraser C, Torres-Sánchez C, Patton EE, Bradley M, Carragher NO, Unciti-Broceta A. Nat. Commun. 2014; 5: 3277
  • 23 Hoop M, Ribeiro AS, Rösch D, Weinand F, Mendes N, Mushtaq F, Chen X.-Z, Shen Y, Pujante CF, Puigmartí-Luis J, Paredes J, Nelson BJ, Pêgo AP, Pané S. Adv. Funct. Mater. 2018; 28: 1705 920
  • 24 Zhang X, Liu Y, Doungchawee J, Castellanos-García LJ, Sikora KN, Jeon T, Goswami R, Fedeli S, Gupta A, Huang R, Hirschbiegel C.-M, Cao-Milán R, Majhi PKD, Cicek YA, Liu L, Jerry DJ, Vachet RW, Rotello VM. J. Controlled Release 2023; 357: 31
  • 29 Tsubokura K, Vong KKH, Pradipta AR, Ogura A, Urano S, Tahara T, Nozaki S, Onoe H, Nakao Y, Sibgatullina R, Kurbangalieva A, Watanabe Y, Tanaka K. Angew. Chem. Int. Ed. 2017; 56: 3579
  • 30 Oliveira BL, Stenton BJ, Unnikrishnan VB, Rebelo de Almeida C, Conde J, Negrão M, Schneider FSS, Cordeiro C, Godinho Ferreira M, Caramori GF, Domingos JB, Fior R, Bernardes GJL. J. Am. Chem. Soc. 2020; 142: 10869
  • 32 Chen  Z, Li H, Bian Y, Wang Z, Chen G, Zhang X, Miao Y, Wen D, Wang J, Wan G, Zeng Y, Abdou  P, Fang J, Li S, Sun C.-J, Gu Z. Nat. Nanotechnol. 2021; 16: 933
  • 45 van Onzen AHAM, Versteegen RM, Hoeben FJM, Filot IAW, Rossin R, Zhu T, Wu J, Hudson PJ, Janssen HM, ten Hoeve W, Robillard MS. J. Am. Chem. Soc. 2020; 142: 10955
  • 46 de Geus MAR, Maurits E, Sarris AJC, Hansen T, Kloet MS, Kamphorst K, ten Hoeve W, Robillard MS, Pannwitz A, Bonnet SA, Codée JDC, Filippov DV, Overkleeft HS, van Kasteren SI. Chem.–Eur. J. 2020; 26: 9900
  • 52 Rossin R, Versteegen RM, Wu J, Khasanov A, Wessels HJ, Steenbergen EJ, ten Hoeve W, Janssen HM, van Onzen AHAM, Hudson PJ, Robillard MS. Nat. Commun. 2018; 9: 1484
  • 56 Czuban M, Srinivasan S, Yee NA, Agustin E, Koliszak A, Miller E, Khan I, Quinones I, Noory H, Motola C, Volkmer R, Di Luca M, Trampuz A, Royzen M, Mejia Oneto JM. ACS Cent. Sci. 2018; 4: 1624
  • 63 Bernard S, Audisio D, Riomet M, Bregant S, Sallustrau A, Plougastel L, Decuypere E, Gabillet S, Kumar RA, Elyian J, Trinh MN, Koniev O, Wagner A, Kolodych S, Taran F. Angew. Chem. Int. Ed. 2017; 56: 15612
  • 64 Porte K, Renoux B, Péraudeau E, Clarhaut J, Eddhif B, Poinot P, Gravel E, Doris E, Wijkhuisen A, Audisio D, Papot S, Taran F. Angew. Chem. Int. Ed. 2019; 58: 6366