Paquin, J.-F. : 2024 Science of Synthesis, 2024/4: Modern Strategies in Organofluorine Chemistry 1 DOI: 10.1055/sos-SD-243-00109
Modern Strategies in Organofluorine Chemistry 1

1.1 Sulfonyl Fluorides and Acyl Fluorides

More Information

Book

Editor: Paquin, J.-F.

Authors: Arimitsu, S. ; Barata-Vallejo, S. ; Brioche, J. ; Cahard, D. ; Charette, A. B. ; Chen, P. ; Crousse, B. ; De Borggraeve, W. M. ; Hu, M. ; Ismalaj, E. ; Joosten, A. ; Kordnezhadian, R. ; Lai, J. ; Liu, G. ; Luo, Y.-C. ; Peyrical, L. C. ; Postigo, A. ; Sammis, G. M. ; Shao, X. ; Shen, Q. ; Song, H.; Thomson, B. J. ; Wu, S.; Xu, C. ; Yerien, D. E. ; Zhang, X.

Title: Modern Strategies in Organofluorine Chemistry 1

Online ISBN: 9783132458253; Book DOI: 10.1055/b000000921

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

Sulfonyl fluorides have numerous applications in both synthetic organic chemistry as fluorinating agents and as precursors to sulfur(VI) moieties, and in chemical biology as covalent inhibitors and chemical probes. The utility of sulfonyl fluorides arises from the properties of the S—F bond, as the high bond strength and polarization imparts stability and chemoselectivity that differentiates this group from other sulfur(VI) halides. Likewise, acyl fluorides have found widespread use in organic synthesis as reactive intermediates. The increased stability toward hydrolysis and aminolysis in comparison to acyl chlorides and bromides are a result of the relative strength and electrostatic stability of the C—F bond. In this review, we provide an overview of synthetic approaches to these valuable motifs, with a focus on versatile and easy-to-handle protocols.

 
  • 11 Chatgilialoglu C, In: The Chemistry of Sulphones and Sulphoxides Patai S, Rappoport Z, Stirling CJM. Wiley New York 1988; 1089
  • 14 Scherader G, Bayer O, Kuthenthal H. US 2 114 577, 1938
  • 17 Ciuffarin E, Senatore L, Isola M. J. Chem. Soc., Perkin Trans. 2 1972; 468
  • 21 Davies W, Dick JH. J. Chem. Soc. 1931; 2104
  • 22 Davies W, Dick JH. J. Chem. Soc. 1932; 483
  • 23 Pound DW, Saunders BC. GB 628 796, 1949
  • 32 Pérez-Palau M, Cornella J. Eur. J. Org. Chem. 2020; 2497
  • 51 Smedley CJ, Li G, Barrow AS, Gialelis TL, Giel M.-C, Ottonello A, Cheng Y, Kitamura S, Wolan DW, Sharpless KB, Moses JE. Angew. Chem. Int. Ed. 2020; 59: 12460
  • 52 Tribby AL, Rodríguez I, Shariffudin S, Ball ND. J. Org. Chem. 2017; 82: 2292 corrigendum: J. Org. Chem. 2017; 82: 5993
  • 68 Jedrzejczak M, Motie RE, Satchell DPN. J. Chem. Soc., Perkin Trans. 2 1993; 599
  • 70 Miller J, Ying O.-L. J. Chem. Soc., Perkin Trans. 2 1985; 323
  • 85 Hattori H, Ishida K, Ogiwara Y, Sakai N. Eur. J. Org. Chem. 2022; e202201118
  • 93 Dmowski W, In: Chemistry of Organic Fluorine Compounds II Hudlický M, Pavlath AE. American Chemical Society Washington, DC 1995; 263
  • 97 Olah GA, Nojima M, Kerekes I. Synthesis 1973; 487
  • 100 El-Faham A. Chem. Lett. 1998; 671
  • 110 Singh RP, Shreeve JM. Synthesis 2002; 2561
  • 113 Smith WC. US 2 859 245, 1958
  • 114 Markovskij LN, Prashinnik VE, Kirsanov AV. Synthesis 1973; 787
  • 116 Middleton J. US 3 950 402, 1975
  • 117 Middleton J. US 3 976 691, 1976
  • 119 Gustafsson T, Gilmour R, Seeberger PH. Chem. Commun. (Cambridge) 2008; 3022
  • 120 Polterauer D, Hanselmann P, Littich R, Bersier M, Roberge DM, Wagschal S, Hone CA, Kappe CO. Org. Process Res. Dev. 2023; 27: 2385
  • 126 Mahé O, Desroches J, Paquin J.-F. Eur. J. Org. Chem. 2013; 4325
  • 138 Kim J.-G, Jang DO. Synlett 2010; 3049
  • 151 Yang Z, Chen S, Yang F, Zhang C, Dou Y, Zhou Q, Yan Y, Tang L. Eur. J. Org. Chem. 2019; 5998