1.8 Synthesis of (Trifluoromethyl)sulfanyl (SCF3) Compounds
Book
Editor: Paquin, J.-F.
Title: Modern Strategies in Organofluorine Chemistry 1
Online ISBN: 9783132458253; Book DOI: 10.1055/b000000921
1st edition © 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG, Stuttgart
Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry
Science of Synthesis Reference Libraries
Parent publication
Title: Science of Synthesis
DOI: 10.1055/b-00000101
Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.
Type: Multivolume Edition
Abstract
(Trifluoromethyl)sulfanyl compounds have garnered significant attention in medicinal chemistry, agrochemistry, and materials science due to their unique physicochemical properties, including high lipophilicity, metabolic stability, and strong electron-withdrawing ability. This review pro-vides a comprehensive overview of the current methods for the synthesis of (trifluoromethyl)sulfanyl compounds, highlighting recent advances and emerging strategies. Key synthetic approaches, such as direct (trifluoromethyl)sulfanylation, transition-metal-catalyzed processes, and radical-based methods are discussed with an emphasis on the substrates and reagents. The chapter also briefly introduces the mechanistic insights and the role of novel reagents in enhancing the efficiency and selectivity of these synthetic transformations.
Key words
(trifluoromethyl)sulfanyl compounds - electrophilic (trifluoromethyl)sulfanylation - nucleophilic (trifluoromethyl)sulfanylation - radical (trifluoromethyl)sulfanylation - (difluoro-methyl)sulfanylation - fluorinated alkyl thioethers - (fluoroalkyl)sulfanyl compounds - palladium catalysis - photocatalysis - carbon–sulfur bond formation - nitrogen–sulfur bond formation - oxygen–sulfur bond formation - asymmetric (trifluoromethyl)sulfanylation- 6 Tashiro S, Hayashi M, Takemura W, Igarashi Y, Liu X, Mizukami Y, Kojima N, Enoki Y, Taguchi K, Yokoyama Y, Nakamura T, Matsumoto K. Pharm. Res. 2021; 38: 27
- 9 Anselmi E, Simon C, Marrot J, Bernardelli P, Schio L, Pégot B, Magnier E. Eur. J. Org. Chem. 2017; 6319
- 26 Mao R, Bera S, Turla AC, Hu X. J. Am. Chem. Soc. 2021; 143: 14667 corrigendum: J. Am. Chem. Soc. 2021; 143: 17302
- 55 Zhang P, Li M, Xue X.-S, Xu C, Zhao Q, Liu Y, Wang H, Guo Y, Lu L, Shen Q. J. Org. Chem. 2016; 81: 7486
- 86 Wang D, Carlton CG, Tayu M, McDouall JJW, Perry GJP, Procter DJ. Angew. Chem. Int. Ed. 2020; 59: 15918
- 93 Zheng C, Ma M, Huang S, Jiang C, Liu Y, Fu Y, Zhao K, Feng R, Hong J. Tetrahedron Lett. 2022; 103: 153982
- 124 Petit-Cancelier F, François B, Pannecoucke X, Couve-Bonnaire S, Besset T. Adv. Synth. Catal. 2020; 362: 760
- 127 Yang L, Wang S, Liang F, Han Y, Li Y, Shan D, Liu L, Wang Q, Zhu D. Org. Chem. Front. 2023; 10: 4368
- 128 Liu W, Xing S, Ni S.-F, Ma C, Fan Q, Ye Z, Zhao Y, Ouyang T, Bai Y, Shao X. Org. Chem. Front. 2023; 10: 3522
- 132 Xing S, Zhu Y.-Y, Liu W, Liu Y, Zhang J, Zhang H, Wang Y, Ni S.-F, Shao X. Org. Lett. 2022; 24: 3378