Indian Journal of Neurotrauma 2004; 01(02): 15-20
DOI: 10.1016/S0973-0508(04)80004-2
Review Article
Thieme Medical and Scientific Publishers Private Ltd.

Hypertonic Saline In Traumatic Brain Injury: Current Status

Kavita Sandhu Lt Col
,
TVSP Murthy Lt Col
,
Brig T Prabhakar

Subject Editor:
Further Information

Publication History

Publication Date:
05 April 2017 (online)

Abstract

Traumatic brain injury is among the leading causes of mortality today. Systemic hypotension and intracranial hypertension are major contributors towards morbidity and mortality in these patients. The primary goal of resuscitation is to maintain adequate blood pressure while attenuating the expected rise in intracranial pressure. The type of fluid to be used for this is much debated even today. Mannitol is the most popular agent, but there are limitations to its administration. Interest is now focusing on the utility of other hyperosmolar agents like hypertonic saline, that combat raised intracranial pressure and support intravascular volume. However, no standards exist regarding its indications or optimal administration regimen in the treatment of traumatic brain injury. A review of literature regarding the postulated mechanism of action and current status of its role in traumatic brain injury is discussed.

 
  • References

  • 1 Shackford SR, Mackensie RC, Holbrook TI. et al The epidemiology of traumatic death: A population based analysis. Arch Surg 128 1993; 571-575
  • 2 Chestnut RM, Marshall LS, Klauber M. et al The role of secondary brain injury in determining outcome from severe head injury. J Trauma 34 1993; 216-222
  • 3 Marshall LF, Smith RW, Shapiro HM. The outcome with aggressive treatment in severe head injuries. Part I. The significance of intracranial pressure monitoring. J Neurosurg 50 1979; 20-25
  • 4 Chestnut RM. Medical management of severe head injury: Present and future. NewHoriz 03 1995; 551-593
  • 5 Arai T, Tsukahara I, Nitta K. et al Effects of mannitol on cerebral circulation after transient complete cerebral ischaemia in dogs. Crit Care Med 14 1986; 634-637
  • 6 Shackford SR, Bourguignon RR, Wald SL. et al A prospective randomized clinical trial. J Trauma 44 1998; 50-58
  • 7 Weed LH, McKibben PS. Pressure changes in cerebrospinal fluid following IV injection of solutions of various concentrations. Am J Physiol 48 1919; 512-530
  • 8 Todd MM, Tommasino C, Moore S. Cerebral effects of isovolemic hemodilution with hypertonic saline solution. J Neurosurg 64 1986; 627-634
  • 9 Shackford SR. Fluid resuscitation in head injury. J Intensive Care Med 05 1990; 59-68
  • 10 Holcroft JW, Vassar MJ, Turner JE. et al 3% NaCl and 7.5% NaCl dextran for resuscitation of severely injured patients. Ann Surg 206 1987; 278-288
  • 11 Vassar MJ, Perry CA, Gannaway WL. et al 7.5% NaCl dextran for resuscitation of trauma patients undergoing helicopter transport. Arch Surg 126 1991; 1065-1072
  • 12 Shroder ML, Muizelaar JP, Kuta AJ. Documented reversal of global ischaemia immediately after removal of an acute subdural haematoma. J Neurosurg 80 1994; 324-327
  • 13 Chestnut RM, Gautille T, Blunt BA. et al Neurogenic hypotension in patients with severe head injuries. J Trauma 44 1998; 958-964
  • 14 Cudd TA, Purniton S, Patel NC. et al Cardiovascular adrenocorticotropin and cortisol responses to hypertonic saline in euvolemic sheep are altered by prostaglandin synthetase inhibition. Shock 10 1998; 32-36
  • 15 Pascnal JM, Watson JC, Runyon AE. et al Resuscitation of intraoperative hypovolemia a comparison of normal saline and hyperosmotic / hyperon.cotic solutions in swine. Crit Care Med 20 1992; 200-210
  • 16 Qureshi A, Suarez J, Bhardwaj A. et al Use of hypertonic saline/acetate infusion in the treatment of cerebral edema: effect on intracranial pressure and lateral displacement of the brain. Crit Care Med 26 1998; 440-446
  • 17 Favre J, Ravussin P, Chiolero R. et al Hypertonic solutions and intracranial pressure. Schweiz Med Wochenachr. J Suisse Med 126 1996; 1635-1643
  • 18 Qureshi A, Wilson D, Traystman R. Treatment of elevated intracranial pressure in experimental intracerebral hemorrhage: comparison between mannitol and hypertonic saline. Neurosurgery 44 1999; 1055-1063
  • 19 Videen JS, Michaclis T, Pinto T. et al Human cerebral osmolytes during chronic hyponatremia. A proton magnetic resonance spectroscopy study. J Clin Invest 95 1995; 788-793
  • 20 Trachtman H. Cell volume regulation: a review of cerebral adaptive mechanisms and implications for clinical treatment of osmolal disturbances II. Pediatr Nephrol 05 1992; 743-750
  • 21 Olson JE, Banks M, Dimlich RV. et al Blood brain barrier water permeability and brain osmolyte content during edema development. Acad Emer Med 04 1997; 662-673
  • 22 Yashamita T, Kohmura E, Yamauchi A. et al Induction of Na+/ myositol cotransporter mRNA after focal cerebral ischaemia: evidence for extensive osmotic stress in remote areas. J Cereb Blood Flow Metab 16 1996; 1203-1210
  • 23 Yashamita T, Shimada S, Yamauchi A. et al Induction of Na+Myoinositol cotransporter mRNA after rat cryogenic injury. Brain Res Mol Brain Res 46 1997; 236-242
  • 24 Pascaul JM, Watson JC, Runyon AE. et al Resuscitation of intraoperative hypovolemia a comparison of normal saline and hyperosmotic/ hyperoncotic solutions in swine. Crit Care Med 20 1992; 200-210
  • 25 Nose H, Doi Y, Usi S, Kubota T. et al Continuous measurement of sodium concentration in CSF during gastric water infusion in dehydrated rats. J Appl Physiol &3 1992; 1419-1424
  • 26 Khanna S, Davis D, Fisher B. et al Prolonged hypernatremia controls elevated intracranial pressure in pediatric head injury patients. Crit Care Med 26 2000; 421-422
  • 27 Schroder ML, Muizelaar JP, Fatouros PP. et al Regional cerebral blood volume after severe head injury in patients with regional cerebral ischaemia. Neurosurgery 42 1998; 1276-1281
  • 28 Boldt J, Zickmann B, Herold C. et al Influence of hypertonic volume replacement on the microcirculation in cardiac surgery. Br J Anaesth 67 1991; 595-5602
  • 29 Hariri RJ, Ghajar JB, Pomerantz KB. et al Human glial cell production of lipooxgenase generated eicosanoids: a potential role in the pathophysiology of vascular changes following traumatic brain injury. J Trauma 29 1989; 1203-1210
  • 30 Cudd TA, Purinton S, Patel NC. Cardiovascular adrenocorticotropin and cortisol responses to hypertonic saline in euvolemic sheep are altered by prostaglandin synthetase inhibition. Shock 10 1998; 32-36
  • 31 Bauer M, Marzi I, Ziegenfuss T. et al Comparative effects of crystalloid and small volume hypertonic hyperoncotic fluid resuscitation on hepatic microcirculation after hemorrhagic shock. Circ Shock 40 1993; 187-193
  • 32 Brown JL, Baker AJ, Konasieuriez SJ. et al Clinical significance of CSF glutamate concentrations following severe traumatic brain injury in humans. J Neurotrauma 15 1998; 253-263
  • 33 Worthley LI, Cooper DJ, Jones N. Treatment of resistant intracranial hypertension with hypertonic saline solution. J Neurosurg 64 1986; 627-634
  • 34 Einhaus S, Croce M, Watridge c. et al The use of hypertonic saline for treatment of increased intracranial pressure. J Tenn Med Assoc 89 1996; 81-82
  • 35 Suarez J, Qureshi A, Bhardwaj A. et al Treatment of refractory intracranial hypertension with 23.4% saline. Crit Care Med 26 1998; 1118-1122
  • 36 Horn P, Meunch E, Vajkocry P. et al Hypertonic saline solution for control of elevated intracranial pressure in patients with exhausted response to mannitol and barbiturates. Neurol Res 21 1999; 758-764
  • 37 Simma B, Burger R, Falk M. et al A prospective randomized and controlled study of fluid management in children with severe head injury: Lactated ringer solution vs. hypertonic saline. Crit Care Med 26 1998; 1265-1270
  • 38 Qureshi AL, Suarez JL. Castro. et al Use of hypertonic saline/acetate infusion in treatment of cerebral edema in patients with head trauma. J Trauma 47 1999; 659-665
  • 39 Peterson B, Khanna S, Fischer B. et al Prolonged hypernatremia controls elevated intracranial pressure in head injured pediatric patients. Crit Care Med 28 2000; 1136-1143
  • 40 Fulton R, Flynn W, Mancino M. et al Brain injury causes loss of cardiovascular response to hemorrhagic shock. J Invest Surg 06 1993; 117-131
  • 41 Anderson J, Wisner D, Sullivan P. et al Initial small volume hypertonic resuscitation of shock and brain injury: short and long term effects. J Trauma 42 1997; 592-600
  • 42 Vassar M, Perry C, Holcroft J. Prehospital resuscitation of hypotensive trauma patients with 7.5% NaCl vs. 7.5% NaCl with added dextran: a controlled trial. J Trauma 34 1993; 622-632
  • 43 Vassar MJ, Fischer RP, OBrian PE. et al A multicentric trial for resuscitation of injured patients with 7.5% sodium chloride. The effect of added dextran 70. Arch Surg 128 1993; 1003-1013
  • 44 Cooper DJ, Myles PS, McDermott FT. et al Prehospital hypertonic saline resuscitation of patients with hypotension and severe traumatic brain injury. JAMA 291 2004; 1350-1357
  • 45 Lewis RJ. Prehospital care of the multiply injured patient. JAMA 291 2004; 1382-1383
  • 46 Sterns RH, Riggs JE, Schochet SS. Osmotic demyelination syndrome following correction of hyponatremia. N Engl J Med 317 1986; 1535-1542
  • 47 Laurens R, Karp BI. Myelinolysis after correction of hyponatremia. Ann Intern Med 126 1997; 57-62
  • 48 Huang PP, Stuchy FS, Dimick AR. et al Hypertonic sodium resuscitation is associated with renal failure and death. Ann Surg 221 1995; 543-557
  • 49 Dubick MA, Wade CE. A review of the efficacy and safety of 7.5% NaCl/ 6% dextran 70 in experimental animals and in humans. J Trauma 36 1994; 323-330
  • 50 Riddez L, Hahn RG, Suneson A. et al Central and regional hemodynamics during uncontrolled bleeding using hypertonic saline dextran for resuscitation. Shock 10 1998; 176-181
  • 51 Krausz MM. Controversies in shock research: hypertonic resuscitation -pros and cons. Shock 03 1995; 69-72